
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
CONCEPTUAL FRAMEWORK APPROACH FOR

SYSTEMS-OF-SYSTEMS SOFTWARE DEVELOPMENTS

by

Dale Scott Caffall

March 2003

 Thesis Co-Advisor: James Bret Michael
 Thesis Co-Advisor: Man-tak Shing

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Conceptual Framework Approach for
System-of-Systems Software Developments

6. AUTHOR(S) Dale Scott Caffall

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Department of Defense looks increasingly towards an interoperable and integrated system-of-systems to provide required
military capability. Non-essential software complexity of a system-of-systems can have a greater negative impact in system
behavior than a single system. Our current systems-of-systems tend to require a great deal of software maintenance and to be
intolerant of even the most minor of changes with respect to negative perturbations in system behavior.

In this thesis, we explore the benefits of developing a conceptual framework as the basis for the system-of-systems
development. We examine the application of accepted software engineering practices for single-system developments to the
more complex problem of system-of-systems development. Using the Ballistic Missile Defense System as a case study, we
present an abstract framework from which we can reason about the system-of-systems. We develop a conceptual software
architecture that represents a logical organization of proposed software modules. We map the functionality of the system to
conceptual software components with coordination and data exchanges handled by conceptual connectors. Finally, we assess
our work to determine the feasibility of applying the conceptual framework techniques described in this thesis to system-of-
systems acquisitions with the objective of reducing accidental complexity and controlling essential complexity.

15. NUMBER OF
PAGES

99

14. SUBJECT TERMS
System-of-Systems, Software Complexity, Domain Analysis, Software Architecture

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

CONCEPTUAL FRAMEWORK APPROACH FOR
SYSTEM-OF-SYSTEMS SOFTWARE DEVELOPMENTS

Dale Scott Caffall

Civilian, Missile Defense Agency, Washington, D.C.
B.S., University of Arizona, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Dale Scott Caffall

Approved by: James Bret Michael

Co-Thesis Advisor

Man-Tak Shing
Co-Advisor

Peter Denning
Chairman, Department of Computer Science

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

The Department of Defense looks increasingly towards an interoperable and

integrated system-of-systems to provide required military capability. Non-essential

software complexity of a system-of-systems can have a greater negative impact in system

behavior than a single system. Our current systems-of-systems tend to require a great

deal of software maintenance and to be intolerant of even the most minor of changes with

respect to negative perturbations in system behavior.

In this thesis, we explore the benefits of developing a conceptual framework as

the basis for the system-of-systems development. We examine the application of

accepted software engineering practices for single-system developments to the more

complex problem of system-of-systems development. Using the Ballistic Missile

Defense System as a case study, we present an abstract framework from which we can

reason about the system-of-systems. We develop a conceptual software architecture that

represents a logical organization of proposed software modules. We map the

functionality of the system to conceptual software components with coordination and

data exchanges handled by conceptual connectors. Finally, we assess our work to

determine the feasibility of applying the conceptual framework techniques described in

this thesis to system-of-systems acquisitions with the objective of reducing accidental

complexity and controlling essential complexity.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. SOFTWARE COMPLEXITY…………………………………...……………1

II. SYSTEM-OF-SYSTEMS………………………………………..…………....7

III. BALLISTIC MISSILE DEFENSE SYSTEM…………………………….…15

IV. DOMAIN ANALYSIS……………………………………………….…..….21

V. SOFTWARE ARCHITECTURE………………………………………….…59

VI. OBSERVATIONS AND CONCLUSIONS……………………………..…..73

LIST OF REFERENCES………………………………………………………….…83

INITIAL DISTRIBUTION LIST………………………………………………..…..85

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

LIST OF FIGURES

Figure 1. Hypothetical Missile Defense System-of-Systems………………………11

Figure 2. Ballistic Missile Kill Chain……………………………………………....20

Figure 3. Class Diagram of Hypothetical Missile Defense System-of-Systems...…31

Figure 4. Subclasses of Threat Missile Class……………………………………....32

Figure 5. Subclasses of Sensor Class……………………………………………....33

Figure 6. BM/C2 Class as an Aggregate…………………………………………...34

Figure 7. Subclasses of Weapon Class……………………………………………..35

Figure 8. Subclasses of Interceptor Class……………………………………….….36

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

ACKNOWLEDGMENTS

I would like to thank Professor Bret Michael, Professor Man-Tak Shing, and Professor

Richard Riehle for the outstanding support and superior instruction offered to me during my time

of study at the Naval Postgraduate School. These folks worked tirelessly to enhance my

understanding of software engineering. I would like to offer special thanks to Professor Michael

who spent many hours of his time in shaping my understanding and charting my future studies. I

would like to thank the Naval Postgraduate School for offering world-class instruction in

software engineering. I am very appreciative of the opportunity that this institution afforded to

me. I would like to thank my mother and father who provided me with the inspiration to seek

higher-level education through personal example and sacrifice. Most of all, I would like to thank

the greatest wife in the world who happens to be married to me. Without question, Trudy went

“above and beyond” the call to ensure that the fire was stoked and the home front was secure. I

love her dearly.

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

I. SOFTWARE COMPLEXITY

Get to your places!' shouted the Queen in a voice of thunder, and people began

running about in all directions, tumbling up against each other; however, they got settled

down in a minute or two, and the game began. Alice thought she had never seen such a

curious croquet-ground in her life; it was all ridges and furrows; the balls were live

hedgehogs, the mallets live flamingoes, and the soldiers had to double themselves up and

to stand on their hands and feet, to make the arches.

The chief difficulty Alice found at first was in managing her flamingo: she

succeeded in getting its body tucked away, comfortably enough, under her arm, with its

legs hanging down, but generally, just as she had got its neck nicely straightened out, and

was going to give the hedgehog a blow with its head, it would twist itself round and look

up in her face, with such a puzzled expression that she could not help bursting out

laughing: and when she had got its head down, and was going to begin again, it was very

provoking to find that the hedgehog had unrolled itself, and was in the act of crawling

away: besides all this, there was generally a ridge or furrow in the way wherever she

wanted to send the hedgehog to, and, as the doubled-up soldiers were always getting up

and walking off to other parts of the ground, Alice soon came to the conclusion that it

was a very difficult game indeed.

– Alice in Wonderland

Complexity is the great destroyer of software. Over the lifecycle of the software,

the complexity will gradually increase through the inclusion of software patches and

enhancements. Just as gradually increasing blood pressure can eventually lead to strokes

and aneurisms, gradually increasing software complexity can lead to failed developments

and software decay. While some degree of complexity is essential, the accidental and

uncontrolled complexity is what we desire to purge from our system software.

Software complexity and size are increasing dramatically in our delivered

products. Customers are demanding more features in their systems in less time than in

any time in history. Under the demands of management, software developers scurry to

 1

coding with limited requirements elicitation and software architecture reasoning. As a

result of this mad rush to the goal line, software developers stumble along - oftentimes

fumbling the ball - and rarely score a touchdown. Sadly, software developers are

building software products that have about a 26% chance of completing on time and on

budget. For Government software projects, developers have about an 18% chance of

completing their projects on time and on budget. Moreover, the delivered products will

have fewer features and functions that originally desired by the customer [15]. Of great

alarm to the Department of Defense, only 2% of the software was usable as delivered

[11].

So, knowing what we know and armed with a great deal of advice from the wise,

grizzled veterans of many software campaigns, why can we not develop better software

products? Why is it that we know a great deal about the consequences of software

complexity yet we continue to develop system software with a high degree of

complexity?

A basic principle in all engineering disciplines is to “keep it simple.” The best

that we can do in software engineering is to minimize “accidental complexity” and

control “essential complexity.” Accidental complexity occurs due to a mismatch of

paradigms, methodologies, and application tools [12]. Essential complexity is a fact of

software engineering in that software engineers use complex data structures and

algorithms to realize elaborate system features. Consequently, software engineers may

not easily comprehend all of the possible behaviors of a software system as determined

by the reachable system states. We discover time and again that software development is

partly art and partly engineering.

Software complexity can occur in the extension of intended system use beyond

the engineering-design space. As system software is used in ways never envisioned by

the developers, operators are demanding extensions in their system software. Software

will perform as it is designed to do; however, in the context of a system and operational

environment in which it is operating, the system may perform the wrong action.

Software may function as desired until a user attempts to apply it in an unexpected

manner. Software may fail intermittently as sporadic environmental conditions come and

 2

go [9]. Additionally, software may function well for years until a particular operating

condition changes and produces undesired behavior in the system software.

Two aspects of software complexity that engineers can control are the degree of

cohesion and coupling in the software structure. Cohesion is the number of functions

included within a single software component whereas coupling is the degree of intricacy

of the relationships among software components [4]. A system of low cohesion (i.e.,

numerous functions in individual software components) and high coupling (i.e., highly

intricate linkages among software components) is oftentimes hard to understand, hard to

reuse, hard to maintain, and easily affected by change [16]. As such, system software

will require a significant effort to implement enhancements and correct deficiencies that

occur as a result of high complexity. Furthermore, increased software complexity

decreases our ability to reuse software given that software engineers must work through

the labyrinths of component linkages and bloated software components that spawn a

multitude of functionalities in highly coupled and low cohesion system software.

The potential consequences of software complexity are significant in system

software built for military use. Non-essential software complexity of a system-of-

systems can have a greater negative impact in system behavior than a single system. A

system-of-systems comes about from the assemblage of legacy systems for the purpose

of providing a greater military capability than these systems operating autonomously

could provide to the warfighters. In some system-of-systems, we integrate new

developments into a given combination of legacy systems. (Note: For the purposes of

this thesis, we will define a system-of-systems as the amalgamation of legacy systems

and developing systems.)

The Department of Defense (DoD) looks increasingly towards an interoperable

and integrated system-of-systems to provide required military capability. While the need

for networked capability has exploded in military warfare, DoD has yet to develop a

system-of-systems acquisition methodology for acquiring system-of-systems that will

yield effective, interoperable, and robust systems, and provide enhanced military

capability in a the full spectrum of the intended battlespace. Our current systems-of-

 3

systems tend to require a great deal of software maintenance and to be intolerant of even

the most minor of changes with respect to negative perturbations in system behavior.

As examples of system-of-systems, consider the joint air defense system-of-

systems environment and joint information transfer system-of-systems. DoD has

invested many millions of dollars in providing effective, interoperable, and robust

systems; however, these systems require significant software maintenance and numerous

software patches to limp along in support of our warfighters. Many identified

interoperability and integration deficiencies have plagued these systems for years;

however, due to the considerable software complexity of these systems, our approach to

solving these problems is oftentimes the development of a software patch to suppress

undesired system behavior.

Undoubtedly, software applications are the most complex entities that humans can

build. As the size and complexity increase, the system software design and organization

become increasingly more significant than the selection of algorithms and data structures

[13]. In the current DoD environment of rapidly paced acquisitions, senior management

tends to place intense pressure on delivering desired features in seemingly unrealistic

timeframes. In this type of acquisition environment, systems may be developed with

little thought about the organization and behavior of the software. In the rush to deliver

something quickly, system developers maintain a vision as far as the next line of code or

the next aspect of detailed design [3]. This is more evident in the acquisition of a system-

of-systems than in a single system acquisition.

While we cannot address all of the issues that negatively impact system software

development in this thesis, we will examine the issue of requirements specification and

software architectures for system-of-systems. Typically, detailed system specifications

address merely the leaves of the system decomposition tree [17]. Software engineers

cannot develop and deliver effective, interoperable, and robust military capability from

just the detailed system specifications. To increase their understanding of the intended

system software behavior, software engineers require layers of abstraction that begin at

the top layer of abstraction that models overall system context and expand in definition

and depiction with the detailed software specifications. It is at the upper layers of

 4

abstraction in which software engineers reason about the system and make architectural

and design decisions.

In this thesis, we explore the benefits of developing a conceptual framework as

the basis for the system-of-systems development. We examine the application of

accepted software engineering practices for single-system developments to the more

complex problem of system-of-systems development. Using the Ballistic Missile

Defense System (BMDS) as a case study, we present an abstract framework from which

we can reason about the system-of-systems. We develop a conceptual software

architecture that represents a logical organization of proposed software modules. We

map the functionality of the system to architectural elements called conceptual software

components with coordination and data exchanges handled by conceptual components

called connectors. Finally, we assess our work to determine the feasibility of applying

the conceptual framework techniques described in this thesis to system-of-systems

acquisitions with the objective of reducing accidental complexity and controlling

essential complexity.

 5

THIS PAGE INTENTIONALLY LEFT BLANK

 6

II. SYSTEM-OF-SYSTEMS

Dorothy: "Now which way do we go?"

Scarecrow: “Pardon me. That way is a very nice way.” (pointing one

direction)

Dorothy looks around quizzically: "Who said that?"

Toto barks at a stuffed Scarecrow.

Dorothy: "Don't be silly, Toto. Scarecrows don't talk!"

Scarecrow: "It's pleasant down that way too!...(pointing in another

direction)."

Dorothy: "That's funny. Wasn't he pointing the other way?"

Scarecrow: "Of course, people do go both ways.” (pointing in two

opposite directions)

Scarecrow: “That's the trouble. I can't make up my mind. I haven't got a

brain. Only straw.”

Dorothy: “How can you talk if you haven't got a brain?

Scarecrow: “I don't know. Some people without brains do an awful lot of

talking, don't they?”

 - The Wizard Of Oz

Unlike other development and construction efforts, software developers

oftentimes are seemingly quite content without a roadmap that depicts how software

components are organized in a system, how these components fit together, how these

 7

components interact, and how these components fulfill the system requirements. Such a

roadmap for software development is a software architecture that defines the system in

terms of computational components and the interactions among those components.

Additionally, the software architecture bridges the gap between system requirements and

realization, thereby documenting the rationale for design decisions [13]. Although users

will quickly know whether something is wrong when they select a menu item and the

system crashes, software engineers frequently cannot identify if the problem is in the

“foundation” (e.g., operating system), in the “plumbing” (e.g., network or middleware),

or in an appliance (e.g., word processing application).

While a software architecture will not guarantee that a system meets its

requirements, a poorly designed or ill-defined software architecture makes it nearly

impossible for the software developers to realize a system that meets its requirements [8].

Typically, the system architecture is little more than a “sticks-and-circles” diagram in

which the circles represent the various systems in the system-of-systems and the sticks

represent the communication links among the systems. More often than not, this type of

architectural view represents the totality of a system architecture effort in DoD

organizations. Unfortunately for the developers who require information models that

faithfully represent the operational battlespace, the circles of the sticks-and-circles

diagram do not define the behavior of the systems and the sticks reveal little of the

connectors that these lines represent. The information model formed by the sticks-and-

circles diagram is a weak information model.

Much too often, we initiate coding from a reasoning about the “sticks-and-circles”

diagrams. During the development, we add new layers of features and functional

enhancements to the system software without clear insight into the organization of the

system software. Inevitably, the basic software organization that seemed so reasonable at

the beginning begins to break apart under the weight of the system software revisions [3].

Regrettably, the software development becomes another casualty to report in future

studies as to why software developments are not successful.

Oftentimes, we compare engineering disciplines to seek points of commonality.

Designing and constructing a new building is a common metaphor from which we

 8

attempt to draw lessons learned from other engineering disciplines. In designing a

skyscraper, a journeyman architect will elicit requirements from the client and translate

those requirements into various views of the proposed structure. A civil engineer will

develop structural drawings and construction plans to build the new structure. Without

some type of framework from the architect, the civil engineer could not construct a

skyscraper that would support its own weight as well as the weight of the occupants, and

their associated furniture and work materials.

The accepted framework for skyscraper design and construction is the set of

blueprints for the proposed building. This set of blueprints has many views to include the

physical construction of the building, more detailed construction views of each floor,

views of the heating and cooling systems, views of the plumbing, and so forth. In

essence, the skyscraper’s architect develops this set of blueprints to provide a conceptual

framework of the proposed building that all stakeholders can read and understand.

Imagine constructing such a building without a framework. Suppose that our civil

engineer was somehow able to construct the skyscraper to the height of three floors

whereupon which he loses confidence in constructing additional floors. Consider that the

civil engineer now wants to add electrical wiring, communications cables, heating ducts,

water and waste drainage plumbing, gas lines, etc. Now, the various craftsmen must drill

holes; run wiring, pipes, and ducts; and connect appliances to this skyscraper without the

benefit of any visual framework. We can only imagine the hodgepodge of wires, cables,

tubing, pipes, ducts, and appliances that would result in this construction.

It is important to emphasize that the set of blueprints is a collection of many

views of the new building. Each view is important to the overall construction of the

building. Without the full set of views, some portion of the new building will suffer in

the construction phase.

Consider the classic novel of the Civil War: The Killer Angels by Michael

Shaara. This novel presents the story of the Battle of Gettysburg as told from the

viewpoints of the battle’s participants from the Union and Confederate armies: General

Robert E. Lee, General James Longstreet, Colonel Joshua Chamberlain, Colonel John

Buford, General Lewis Armistead, and English Colonel Arthur Freemantle.

 9

Shaara had many options for how he might develop this novel. He could have

written a chronological listing of events for each man and allotted a chapter in the book

for each man’s chronological listing of events. In this case, the integration would be left

to the reader. He could have divided the book into two Union and Confederate chapters

and provided a chronological listing of events from the perspectives of first the Union

and then the Confederacy. Again, the integration of the writings would be left to the

reader. In these two approaches, would the author have provided a clearer visualization

of the Battle of Gettysburg than his published work?

Instead, Shaara chose to frame the perspectives of these men around the events of

the Battle of Gettysburg. That is, the common framework was the battle. He added

snippets of perspectives from the participants at the appropriate points in the battle. This

approach provided the reader with a common framework as well as many views of the

battle from the perspectives of the participants. The Killer Angels provides the reader

with insight into the battle by presenting it through the different views of the participants.

This approach enhances the reader’s understanding of the Battle of Gettysburg beyond a

pure chronological listing of events and facts.

We could work through similar examples of other activities. In chemistry, we use

the Periodic Table and balanced equations to develop different views of chemical

reactions. These views help the chemist visualize the products and side effects of

combining various compounds and elements to form the new products. In the design of a

new automobile, we develop a set of views to visualize the required integration efforts of

many physical systems to the fuel flow mechanisms, environmental sensors,

microprocessors, and wiring. In a criminal trial, the district attorney weaves together the

physical evidence, motive, time of events, and defendant accessibility to the crime scene

to present a visual picture to the jury. Can you imagine the confused and complex picture

that the prosecuting attorney would present if he/she could not link the physical evidence

to the motive, time of events, and plaintiff accessibility? If the prosecuting attorney

cannot successfully present an integrated storyline, then the jury cannot visualize a

plausible picture of the crime.

 10

The points of commonality in the above anecdotes are the need for a conceptual

framework and the need for multiple views of the problem that we are attempting to

solve. We can see that the conceptual framework is essential for reasoning about the

problem. In the absence of such a framework, we can easily predict the degree of success

in the above endeavors. We can see that the multiple views add richness to our

conceptual view of the problem and potential solutions.

While keeping in mind the idea that multiple views of a system can increase our

understanding of system behavior, we will apply this concept to the system-of-systems

problem. Consider the following hypothetical missile defense system-of-systems that we

use to illustrate both the inadequacies of the “sticks-and-circles” system architecture view

and the value of the software architecture views. Let us define a proposed missile

defense system-of-systems as four sensors of differing type, four battle management

systems with organic sensors of differing type, and four weapons launchers of differing

type as depicted in the below diagram of Figure 1. The challenge to our system engineer

is to integrate these twelve systems into a single system-of-systems.

BattleManager1

BattleManager2 BattleManager3

BattleManager4

WeaponLauncher1

WeaponLauncher2

Sensor1

Sensor2

Sensor4

k

Figure 1. Hypothetica

Sensor3

networ
WeaponLauncher3

WeaponLauncher4

l Missile Defense System-of-Systems

11

Let us outline the strikes against this system engineer as he/she steps into the

integration batter’s box. At the onset of the system development, the program manager

for each system probably did not have a requirement for inclusion of that system into a

system-of-systems environment. Thus, these twelve systems were developed in isolation

from the other systems and each system design was developed in a different manner than

the others. Most importantly to interoperability and integration, the realized software

organization differs among the systems.

The traditional solution is to apply a communications solution for interoperability

and integration. That is, the “stick” will be a means of information transfer, a messaging

protocol, and, perhaps, a translator box to translate the messaging format from one

system to another. Traditionally, this methodology has failed to achieve an interoperable

and integrated system-of-systems. With each new failure, the system engineers attempt

to “tighten up” the protocol standard; however, the system-of-systems did not achieve the

desired degree of interoperability and integration. The end-state was a collection of

systems that are tightly coupled with a realized protocol standard that only served to

increase the system-of-systems software complexity.

System software critical interactions increase as the complexity of highly

integrated systems increases. In the complex system-of-systems, these possible

combinations are practically limitless. System “unravelings” have an intelligence of their

own as they expose hidden connections, neutralize redundancies, bypass firewalls, and

exploit chance circumstances for which no system engineer might plan [7]. A software

fault in one module of the system software may coincide with the software fault of an

entirely different module of the system software. This unforeseeable combination can

cause cascading failures within the system-of-systems.

For the development of a system-of-systems in some ideal acquisition world, we

might elicit system requirements from the users and develop various software

architecture artifacts that define the system behavior. We might design conceptual

software components that reflect the required functionality of the system, identify the

interfaces between the conceptual components, identify software modules for these

 12

components, design hierarchical layers that group similar modules, and complete the

software design based on the identified modules and layers.

Because architectural decisions are usually made early in the lifecycle, these

decisions are the hardest to change, and hence the most critical and far-reaching. Without

a software architecture that faithfully models desired system behavior, it is difficult to

achieve the satisfaction of the original performance and behavioral requirements, and it is

probably impossible to accommodate major design changes. Software architectures serve

as a planning tool for allocating system requirements as well as promote the construction

of subsystems from architectural components – not the other way around. Furthermore,

problems with the requirements and the architecture will ensconce requirements and

design problems via refinement into lower-level system artifacts such as detailed

software designs, code, and documentation. It is imperative that we make good decisions

early in the lifecycle, and uncover problems in the requirements and architecture as the

architecture and engineering artifacts are developed.

We do not always have the luxury of beginning a system-of-systems development

from scratch. We must work with the evolving systems that are in some phase of

development and legacy systems that are in operational use. We cannot begin anew so

we must find other methods to apply software architecture and software engineering

techniques to the system-of-systems acquisition. We must develop a framework from

which we can reason about a system-of-systems so that we can conduct trade studies on

system cost, schedule, and performance, and make decisions from an aggregate system

view rather than individual systems. Given our revised system-of-systems framework,

we can develop an implementation plan for refactoring the existing system software

organization.

 13

THIS PAGE INTENTIONALLY LEFT BLANK

 14

III. BALLISTIC MISSILE DEFENSE SYSTEM

Col Jessep (Jack Nicholson): You want answers?

Kaffee (Tom Cruise): I think I'm entitled to them.

Jessep: You want answers?

Kaffee: I want the truth!

Jessep: You can't handle the truth! Son, we live in a world that has walls. And those

walls have to be guarded by men with guns. Who's gonna do it? You? You, Lt.

Weinberg? I have a greater responsibility than you can possibly fathom. You weep for

Santiago and you curse the Marines. You have that luxury. You have the luxury of not

knowing what I know: that Santiago's death, while tragic, probably saved lives. And my

existence, while grotesque and incomprehensible to you, saves lives...You don't want the

truth. Because deep down, in places you don't talk about at parties, you want me on that

wall. You need me on that wall. We use words like honor, code, loyalty...we use these

words as the backbone to a life spent defending something. You use 'em as a punchline.

I have neither the time nor the inclination to explain myself to a man who rises and sleeps

under the blanket of the very freedom I provide, then questions the manner in which I

provide it! I'd rather you just said thank you and went on your way. Otherwise, I suggest

you pick up a weapon and stand a post. Either way, I don't give a damn what you think

you're entitled to!

- A Few Good Men

The Department of Defense (DoD) plans to develop a layered ballistic missile

defense to defend the forces and territories of the United States, its Allies, and friends

against all classes of ballistic missile threats. The Missile Defense Agency (MDA) will

accomplish this mission by developing a layered defense that employs complementary

sensors and weapons to engage threat targets in the boost, midcourse, and terminal phases

of flight, and incrementally deploying that capability. The Ballistic Missile Defense

(BMD) program will pursue a broad range of activities in order to develop and evaluate

technologies for the integration of land, sea, air, and space-based platforms to counter

 15

ballistic missiles in all phases of their flight. In parallel, sensor suites and battle

management and command and control will be developed to form the backbone of the

Ballistic Missile Defense System (BMDS).

The objective of the BMDS is to employ a layered defense that provides multiple

engagement opportunities along the entire flight path of a ballistic missile. The BMDS

will provide a ballistic missile defense to the forces and territories of the United States, its

Allies, and friends against all classes of ballistic missile threats.

While the end of the Cold War has signaled a reduction in the likelihood of global

conflict, the threat from foreign missiles has grown steadily as sophisticated missile

technology becomes available on a wider scale. The proliferation of weapons of mass

destruction and the ballistic and cruise missiles that could deliver them pose a direct and

immediate threat to the security of U.S. military forces and assets in overseas theaters of

operation, our allies and friends, as well as our own country. Since 1980, ballistic

missiles have been used in six regional conflicts.

All ballistic missiles share a common, fundamental element - they follow a

ballistic trajectory that includes three phases (reference Figure 2 on page 20). These

phases are the boost phase, the midcourse phase, and the terminal phase. The boost phase

is the portion of a missile's flight in which it is thrusting to gain the acceleration needed

to reach its target. This phase usually last between 3-5 minutes based. During this phase

the rocket is climbing against the earth's gravity and either exiting the earth's atmosphere,

or in the case of shorter-range missiles, only reaching the fringes of outer space. Once

the missile has completed firing its propulsion system, it begins the longest part of its

flight, which is known as the mid-course phase. During this phase the missile is coasting,

or freefalling towards it target. This phase can last as long as 20 minutes in the case of

intercontinental ballistic missiles (ICBMs). Most missiles that leave the atmosphere shed

their rocket motors by this time in order to increase the range that the missile's weapon,

known as a warhead, can travel. For medium and long-range missiles this phase occurs

outside the earth's atmosphere. The final phase of a missile's flight is the terminal phase.

During this phase the missile's warhead reenters the earth's atmosphere at incredible

 16

speeds, some at over 2,000 mph. This phase last approximately 30 seconds for ICBM

class missiles.

There are advantages and challenges to set up engagement opportunities

against a threat missile in each of these phases. The capability to defend against

an attacking missile in each of these phases is called a layered defense, and it may

be expected to increase the chances that the missile and its payload will be

destroyed. By attacking the missile in all phases of flight, we exploit

opportunities that could increase the advantage of the defense. A capability to

intercept a missile in the boost phase, for example, can destroy a missile

regardless of its range or intended aim-point and provide a global coverage

capability. A midcourse intercept capability can provide wide coverage of a

region or regions, while a terminal defense reduces the protection coverage

considerably to a localized area. When we then add shot opportunities in the

midcourse and terminal phases of flight to boost phase opportunities, we increase

significantly the probability that we will be successful. Improving the odds of

interception becomes critical when ballistic missiles carry weapons of mass

destruction. When possible, for the global coverage and protection against more

lethal payloads it can provide, a capability to intercept a missile near its launch

point is always preferable to attempting to intercept that same missile closer to its

target.

DoD will develop technologies, and deploy systems promising an effective,

reliable, and affordable missile defense system. The BMD program is designed to

develop effective systems over time by developing layered defenses that employ

complementary sensors and weapons to engage threat targets in the boost, midcourse, and

terminal phases of flight, and to deploy that capability incrementally.

Mobility in our sensor and interceptor platforms and the capability to do boost

phase and/or midcourse phase intercept must be central features in our architecture if we

are to provide effective territorial protection at home and abroad. Placing sensors

forward, or closer to the target missile launch point, either on land, at sea, in the air, or in

 17

space, will expand the battle space, improve discrimination of the target complex, and

increase engagement opportunities. We will develop complementary elements in

different combinations in order to afford the system a high degree of synergism and

effectiveness.

The BMDS will feature a uniform battle management and command and control

network and leverage, where possible, other Department communication channels to

integrate elements of the BMDS. Because the system must act within minutes or even

seconds to counter ballistic missiles, the information we receive on threats must be

accurately received, interpreted, and acted upon rapidly. The information network must

be seamless and allow information to be passed quickly and reliably among all the

elements of the system.

At the direction of the Secretary of Defense, we have developed a research,

development and test program that focuses on missile defense as a single integrated

system that no longer differentiates between theater and national missile defense.

Over the next three to five years we will pursue parallel technical paths to reduce

schedule and cost risk in the individual efforts. We will explore and demonstrate kinetic

and directed energy kill mechanisms for potential sea-, ground-, air-, and space-based

operations to engage threat missiles in the boost, midcourse, and terminal phases of

flight. In parallel, sensor suites and battle management and command and control

(BMC2) will be developed to form the backbone of the BMDS.

Unlike the conventional build-to-requirements acquisition process of the past, we

adopted a capability-based approach that recognizes that changes will occur along two

separate axes. On the one axis, the threat will evolve and change over time based on the

emergence of new technologies, continued proliferation of missiles worldwide, and

operational and technical adjustments by adversaries (including the introduction of

countermeasures) to defeat our BMDS. On the other axis lie changes we will experience.

These include improving technologies, incremental system enhancements, evolving

 18

views of system affordability, and out-year decisions expanding coverage, potentially

including the territory and populations of our Allies and friends.

Specific system choices and timelines will take shape over the next few

years through our capability-based, block approach. We will increase our

capability over time through an evolutionary process as our technologies mature

and are proven through testing. The block approach allows us to put capable

technologies "in play" sooner than would otherwise be possible. We have

organized the program with the aim of developing militarily useful capabilities in

biannual blocks, starting as early as the 2004-2006 timeframe. These block

capabilities could be deployed on an interim basis to meet an emergent threat, as

an upgrade to an already deployed system, or to discourage a potential adversary

from improving its ballistic missile capabilities.

 19

THIS PAGE INTENTIONALLY LEFT BLANK THIS LEFT BLANK THIS PAGE IN
LEFT BLANK

 PAGE INTENTIONALLY
Assign Weapon

BMDS Kill Chain Functions

Detect

Track

Evaluate Threat

Associate Track/
Correlation

Discriminate Identify Classify

Collect
Data

Formulate
Assessment

Planned
Search

Cued Search Acquire Detect

Prepare
for Launch

Flyout

Se
A

Pair Weapon to Target
•Weigh Data
•Threat Evaluation
•Prioritize Threats

•Generate Tracks
•Correlate Local &
Remote Tracks
•Process non-organic
sensor data
•Maintain Track Files

•Ready Interceptor
•Ready Launcher
• Compute firing
solution

•IFTU
•Divert

•Com
poin
•Dis

•Conduct Active Search
•Conduct Passive Search

Update Track
Amplifying Data•Apply features

recognition
•Debris
•Countermeasures
• Decoys
•Tank/Booster
•RV

Develop
IPP/LPE

•Position
•Velocity
•Covariance
•Sigma
•Missile Type
•RV Type

•Evaluate Impact Point Prediction
Against DAL
•Evaluate Weapon Kinematics
Constraints
•Evaluate Weapon Sensor/
Target Combinations
•Determine Optimum Engagement
Sequence

•Perform
discrimination
•Compare Features

Launch

•Receive Tracks
from other source
•Compute search
volume

•Process sensor data
•Initial filtering
•Develop initial track file

•Compare Profiles
•Trajectories
•Phenomenology
•RCS

•Points
•Ellipse

•TTL
•LTL

•Receive and Display
Track Data
•Synchronize to Ongoing
Tactical Situation

Maintain SA

Engage

•Assign Weapon/Sensor/Target
•Assign Backup

Acquire

Assess Kill

Direct Execution

Release
Results

Figure 2. Ballistic Missile Kill Chain

 20
TENTIONALLY

1

Conduct
Endgame

Handover

lect
impoint

Divert

pute intercept
t
criminate

v18

•Activate all
KV functions
•Begin search

•Fire thrusters
•Maneuver to
target

IV. DOMAIN ANALYSIS

The hostile response didn't seem to faze Smoking Man, who calmly took another

puff from his cigarette. He blew out the smoke in Skinner's direction and responded, "I

have no idea what you are referring to."

"Isn't that just typical. Is that what they teach you up there?" Skinner said,

sounding more agitated. "There was a traffic accident last night. Mulder and Scully

were involved."

That revelation seemed to cause a slight reaction in Smoking Man, though it was

barely discernible from the typical bland expression on his face. "What happened?"

Smoking Man asked.

Skinner couldn't stand the way Smoking Man toyed with him. Did he really think

that Walter Skinner, Assistant Director of the FBI for chrissake, had a chain long enough

to yank? Sure, play dumb. But I know what you and your friends are up to. I beat you

once, and I'll beat you again.

"I'll tell you... not because you don't already know... but because I want you to

know that I know. Apparently, Mulder and Scully, on their way back from an

investigation, crashed into a tanker loaded with industrial solvent on Kings Highway just

outside of D.C. It took them nearly four hours to get the flames out. Regrettably, it looks

like neither agent survived the crash."

"That is unfortunate."

 "Yes, that is unfortunate. I told you what would happen if anyone involved

suffered an accident..." Skinner said, referring to the warning he had used to guarantee

the safety off all those involved in the incident with the classified data tape.

Suddenly, Smoking Man became quite animated, leaning forward in the chair.

"Now wait a minute here. I know what the deal was. To my knowledge, nothing has been

done to either Agent Mulder or Scully. What happened last night was a freak occurrence.

They just ran out of luck, that's all," he said, gesturing forcefully at the FBI man.

 21

"I have a team going over the forensics of the crash at this moment. If they find

any evidence that they 'ran out of luck' because of your doing, there'll be hell to pay. I

promise you."

"Are you finished?" Smoking Man asked defiantly.

Skinner didn't dignify the question with an answer. He merely leaned back and

stared at his adversary. Seeing that the meeting was over, Smoking Man got out of the

chair and walked out of Skinner's office, silently. He would have to meet with the

committee this afternoon and figure out what exactly was going on.

- X-Files

A good system model is the basis for sound system development decisions.

Conversely, we cannot expect to make sound system development decisions armed with a

poor or nonexistent system model. Using various artifacts from the Unified Modeling

Language (UML), we will develop our system-of-systems model because humans tend to

grasp and understand graphical representations easier than written descriptions. This

phenomenon becomes truer as the complexity of a system increases.

We propose that applying the Unified Modeling Language (UML) and object

oriented design (OOD) techniques to the system-of-systems requirements analysis offers

a new model for reasoning about complex system-of-systems developments. Rather than

disparate reasoning about the individual systems of a proposed system-of-systems, we

propose that we develop a sound model for reasoning about the system-of-systems as a

single, functional entity.

The greatest source of system software faults will occur in the integration of the

various systems. With respect to our case study, the hypothetical missile defense systems

will be a complex product that will contain many discrete software packages within each

system. As a rule, these software packages will be developed independent of each other

and programmed in many different languages. Additionally, the hypothetical missile

defense system will include legacy systems that are currently in operation. The means of

integrating these elements and legacy systems are intricate tactical data links that support

the message transfer within the system-of-systems.

 22

The object-oriented paradigm offers a new system-of-systems requirements and

design methodology that can minimize accidental complexity and control essential

complexity through the object-oriented concepts of decentralized control flow, minimal

messaging between classes, implicit case analysis, and information-hiding mechanisms.

While the hypothetical missile defense system will not be a pure object-oriented design,

we can incorporate many of the principles of object-oriented technology to decrease the

complexity of the system-of-systems. We believe that software engineers of system-of-

systems can use this object-oriented paradigm to produce a sound design for the system-

of-systems rather than the traditional federation of systems through a highly coupled

communication medium.

In our approach, we will begin the domain analysis at the top level of abstraction

and work downward to the details. We will develop use cases to help us understand the

goals and functionality of the missile defense system. We will develop other artifacts to

capture system behavior from various perspectives. During the BMDS domain analysis,

we will identify issues that surface for future architectural and design considerations.

As a means of dividing the problem into manageable pieces, we will view the

missile defense problem via the functional requirements. We will use the ballistic missile

kill chain to describe what functions that the BMDS must perform. The kill chain

functions will be as follows: Detect, Track, Assign Weapon, Engage, and Assess Kill. In

the Detect function, the BMDS will use the received data from various sensors, and either

develop a new track file or update existing track files. In the Track function, the BMDS

will apply feature recognition applications to identify and type-classify each ballistic

missile track. In the Assign Weapon function, the BMDS will assign a weapon to each

ballistic missile track based upon the BMDS’ evaluation of the ballistic missile against its

estimated impact point, defended asset list, weapon availability, and interceptor

inventory. In the Engage function, the BMDS will develop the firing solution and

authorize the assigned weapon to engage the ballistic missile. In the Assess Kill function,

the BMDS will use the received data from various sensors to determine whether the

interceptor negated the ballistic missile. If true, then the BMDS will cease monitoring

that ballistic missile track. If not true, then the BMDS will repeat the five kill chain

functions for that ballistic missile threat.

 23

BMDS Use Cases. We developed the BMDS Use Cases based upon the five

functional goals of the Kill Chain. Rather than identify each possible ballistic missile

threat, sensor and weapon (e.g. SCUD-B, Shahab-4, CSS-8, DSP satellite, X-band radar,

PATRIOT, Navy Theater Wide, etc.), we will use the superclasses of these missile

defense elements: Threat Missile, Sensor, BMC2, Weapon, and Interceptor. The five use

cases are presented in the following order: Detect, Track, Assign Weapon, Engage, and

Assess Kill. We will employ this level of abstraction throughout the domain analysis.

 24

 25

Use Case: Detect Threat Ballistic Missile

Context of Use: The goal of this use case is to detect threat ballistic missiles, and either
update an existing track file or create a new track file.

Level: User goal.

Primary Actors: Threat ballistic missile, Sensor, BMC2

Stakeholders and Interests: Area Air Defense Commander

Preconditions: Sensor is in search mode.

Success Guarantee: BMDS detects threat ballistic missile.

Trigger: Adversary launches threat ballistic missile.

Main Success Scenario:

1. Sensor records initial “hit” of a missile launch or a flying object.
2. BMC2 detect feature receives initial track data from sensor.
3. BMC2creates new track file and initiates track threat ballistic missile.

Extensions:

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon
has permissions for “weapons free” engagement upon determination of threat ballistic
missile entering minimum engagement zone above area of assigned defended assets.

3a. Track file exists for track data.
 BMC2 updates existing track file.

Technical and Data Variations List: None

 26

Use Case: Track Threat Ballistic Missile

Context of Use: The goal of this use case is to identify and type-classify the threat
ballistic missile, and develop a fire-quality track for an engagement solution.

Primary Actors: Threat ballistic missile, Sensor, BMC2

Stakeholders and Interests: Area Air Defense Commander:

Preconditions: Sensor is tracking threat ballistic missile.

Success Guarantee: BMC2 develops fire-quality track in terms of position, velocity,
covariance, sigma; missile type, predicted impact point (IPP), launch point estimate
(LPE), and re-entry vehicle (RV) type.

Triggers:

1. Detect feature creates track file for BMC2 tracking feature OR
2. BMC2 determines previously engaged threat ballistic missile is not negated.

Main Success Scenario:
1. Sensor provides amplifying track data to BMC2 tracking feature.
2. BMC2 discriminates track from counter-measures and debris, identifies the track

as a threat ballistic missile, and type-classifies the track.
3. BMC2 provides track information to assign weapon feature.

Extensions:

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon
has permissions for “weapons free” engagement upon determination of threat ballistic
missile entering minimum engagement zone above area of assigned defended assets.

Technical and Data Variations List:

1. BMC2 will have electronic access to established ROEs.
2. BMC2 will have electronic access to defend assets list (DAL).
3. BMC2 will have electronic access to intelligence profiles of threat ballistic

missiles.

 27

Use Case: Assign Weapon

Context of Use: The goal of this use case is to assign a weapon to negate the threat
ballistic missile.

Primary Actors: Threat ballistic missile, Sensor, Weapon, BMC2

Stakeholders and Interests: Area Air Defense Commander

Preconditions:
 Sensor continues to provide track data.
 BMC2 tracking feature develops fire-quality track information.

Success Guarantee: BMDS tasks weapon in sufficient time for interceptor to negate
threat ballistic missile at safe stand-off altitude and distance from defended assets.

Trigger: Tracking feature provides fire-quality track information to BMC2 assign
weapon feature.

Main Success Scenario:

1. BMC2 compares threat ballistic missile IPP to defended asset list, establishes
target priority, and determines target engagement sequence.

2. BMC2 evaluates target engagement sequence against availability information:
launcher availability, missile inventory, and defended asset list.

3. BMC2 assigns a weapon to the target and initiates the engage feature.

Extensions:

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure weapon
has permissions for “weapons free” engagement upon determination of threat ballistic
missile entering minimum engagement zone above area of assigned defended assets.

Technical and Data Variations List:
 BMC2 will have electronic access to established ROEs.
 BMC2 will have electronic access to defended asset list.

 28

Use Case: Engage

Context of Use: The goal of this use case is to engage threat ballistic missile.

Primary Actors: Threat ballistic missile, Sensor, Weapon, Interceptor, BMC2

Stakeholders and Interests: Area Air Defense Commander

Preconditions:
 Sensor continues to provide track data.
 Assign weapon feature has assigned weapon to target.

Success Guarantee: Interceptor negates threat ballistic missile.

Trigger: BMDS assigns weapon to target.

Main Success Scenario:

1. BMC2 computes intercept point, time to launch, and last-time to launch.
2. BMC2 validates weapon launcher readiness and issues command to fire.
3. Weapon activates interceptor.
4. Interceptor engages threat ballistic missile.

Extensions:

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure
weapon has permissions for “weapons free” engagement upon determination of threat
ballistic missile entering minimum engagement zone above area of assigned defended
assets.

Technical and Data Variations List:

1. BMC2 will have electronic access to established ROEs.
2. BMC2 will have electronic access to defend assets list (DAL).

 29

Use Case: Assess Kill

Context of Use: The goal of this use case is to determine the kill status of the threat
ballistic missile.

Primary Actors: Threat ballistic missile, Sensor, BMC2

Stakeholders and Interests: Area Air Defense Commander:

Preconditions: Sensor is in search mode.

Success Guarantee: BMDS determines threat ballistic missile is negated and reports
kill.

Trigger: Interceptor engages threat ballistic missile.

Main Success Scenario:

1. Sensor provides tracking data to BMC2.
2. BMC2 applies feature recognition process, discriminates objects in debris cloud,

and compares tracked objects to intelligence profiles.
3. BMC2 determines that threat ballistic missile is negated and issues kill assessment

report.

Extensions:

*a. At any time inorganic sensors fail to detect threat ballistic missile: Ensure
weapon has permissions for “weapons free” engagement upon determination of threat
ballistic missile entering minimum engagement zone above area of assigned defended
assets.
 2a. BMC2 cannot discriminate objects.
 2a1. Organic weapon sensor searches debris cloud and discriminates
objects.
 3a. BMC2 cannot determine that threat ballistic missile is negated.
 3a1. BMC2 continues to carry track as active threat.
 3a2. Organic weapon sensor searches debris cloud and discriminates
objects.
 3b. BMC2 determines that threat ballistic missile is not negated.
 3b1. BMDS repeats cycle: Detect, Track, Assign Weapon, Engage,
Assess Kill.

Technical and Data Variations List:

1. BMC2 will have electronic access to established ROEs.
2. BMC2 will have electronic access to defend assets list (DAL).
3. BMC2 will have electronic access to intelligence profiles of threat ballistic

missiles.

BMDS Class Diagram. Let us propose a model of the BMDS from the

information in the BMDS Use Cases. We will develop a class diagram with abstract

classes for the major components of the system-of-systems. We will reason about the

class diagram in our attempt to develop subclasses to which we can begin to allocate

requirements and analyze system capabilities and limitations. Additionally, we will

identify message requirements and message flow in our attempt to reduce coupling in the

system-of-systems by developing requirements for simplified interfaces between the

components. We will propose a reassignment of methods to increase the cohesion of the

components [2]. We will use the following five classes:

• Threat Missile: The threat missile class is the enemy missile that

contains warhead of mass destruction: nuclear, chemical, or high explosive munitions.

The adversary will launch the threat missile within the confines of his state. The missile

will climb into the exo-atmospheric region that constitutes up to 80% of the missile

flight. The missile will re-enter the atmosphere over our forces or defended assets at

which time it will impact at its aim point.

• Sensor: The sensor class is the object that detects the threat missile.

Sensor is an abstraction of two subclasses: infrared class and radar class.

• BM/C2: The Battle Manager/Command and Control (BM/C2) class

processes track data from the sensor. The BM/C2 monitors the threat missile, develops

firing solution to negate the threat missile, and directs a weapon to launch its interceptor

with the BM/C2-provided firing solution. The BM/C2 class is an abstraction for all

system echelons of battle management.

• Weapon: The weapon class develops firing solutions, calculates the

probability of kill, and implements the BM/C2 authorization to engage the threat missile.

• Interceptor: The interceptor class is the engagement mechanism that

negates the threat missile. The interceptor class is the abstraction for both directed and

kinetic energy intercepts of the threat missile.

Given these classes and the BMDS Use Cases, we can construct a class diagram

of the BMDS on the following pages.

 30

Detects
 * *

*

Sends to

*

Controls
* *

1

Releases

*

THREAT MISSILE

Velocity
Mass
Altitude
Distance
Burn Intensity
Radar Cross Section
Burn Time
Launch Point
Aim Point

SENSOR

Sensing Range
Field of View
Wavelength
Position
Elevation

GetTrackData()
SendTrackData()

BM/C2

ReceivesTrackData()
Discriminate()
Correlate()
MonitorTBM()
AssignWeaponToTarget()
AuthorizeInterceptorLaunch()

WEAPON

Range

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

INTERCEPTOR

Velocity
Range

Discriminate()
ReceiveUpdates()
LockInterceptPoint()

Figure 3. Class Diagram of Hypothetical Missile Defense System-of-Systems

 Note that the message requirements in the above class diagram are very specific

as compared to the single, large network interface of the sticks and circles diagram.

Through this class diagram, we can easily determine the messaging requirements of each

class. For example, the sensor class wants to determine the attributes of the threat missile

 31

class. The BM/C2 class wants formed track data from the sensor class. The weapon

class waits for control data from the BM/C2 class. The interceptor class waits for the

interceptor release command from the weapon class.

 From this class diagram, we can begin to define abstract interfaces between the

classes. Rather than the largely unmanageable and complex network interface of the

sticks and circles diagram, we can begin to develop very specific interface requirements

from the class diagram approach.

Let us add detail to the threat missile class as this is the point of reference for our

hypothetical missile defense system. We can develop subclasses (i.e. short range,

intermediate range, and long range threat missiles) of the threat missile class as depicted

below in Figure 4.

SHORT RANGE

Velocity : real < 1 Km/s
Mass : real < 1000 Kg
Altitude : real < 100 Km
Distance : real < 1000 Km
Burn Intensity : real
Radar Cross Section : real
Burn Time : time
Launch Point
Aim Point

INTERMEDIATE RANGE

Velocity : real >1 Km/s, < 2 Km/s
Mass real > 1000 Kg, < 2000 Kg
Altitude : real > 100 Km, < 200 Km
Distance : real > 1000 Km, <2000 Km
Burn Intensity : real
Radar Cross Section : real
Burn Time : real
Launch Point
Aim Point

LONG RANGE

Velocity : real > 2 KM/s
Mass : real > 2000 Kg
Altitude : real > 200 Km
Distance : real > 2000 Km
Burn Intensity : real
Radar Cross Section : real
Burn Time : real
Launch Point
Aim Point

THREAT MISSILE

Velocity
Mass
Altitude
Distance
Burn Intensity
Radar Cross Section
Burn Time
Launch Point
Aim Point

*Note: All a

real threat missile da

Figure 4. Subclasses of Threat Missile Class*

ttribute values listed in subclasses are fictitious and do not represent

ta.
32

In our definition of the subclasses, we have assigned attribute values that

represent fictitious data so that our example remains out of the classified regime. These

subclasses with the assigned attributes will form the basis for our reasoning about the

hypothetical missile defense system.

The sensor class is responsible for detecting the threat missile class so let us

develop subclasses that can detect the threat missile subclasses that we have defined. The

subclasses for the sensor class are depicted below in Figure 5.

repr

SENSOR

*Note: All

esent real sensor

GROUND SENSOR

Sensing Range : real < 2000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

SPACE SENSOR

Sensing Range : real < 3000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

Sensing Range
Field of View
Wavelength
Position
Elevation

GetTrackData()
SendTrackData()

SEA-BASED SENSOR

Sensing Range : real < 1000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()

AIRBORNE SENSOR

Sensing Range : real < 1000 Km
Field of View : real
Wavelength : real
Position
Elevation

GetTrackData()
SendTrackData()
Figure 5. Subclasses of Sensor Class*

attribute values listed in subclasses are fictitious and do not

 data.
33

By considering the subclasses of the threat missile class, we can design a sensor

framework for which we can attain overlapping coverage of our sensor subclasses to

greatly increase our opportunities for the detection of the threat missiles. Additionally,

we can develop additional requirements to bolster our detection capability. For example,

after considering the threat missile subclasses for a potential adversary, we may desire to

increase the sensing range of the Sea-Based Sensor to extend our coverage into an

adversary’s territory into which a Ground Sensor solution is not feasible. We can now

levy this requirement change on the Sea-Based Sensor subclass.

After we have detected a Threat Missile object, then we must develop a firing

solution and engage the threat missile. As depicted in Figure 2, the BM/C2 class handles

these functions and several other important functions. While these functions are related,

the incorporation of these methods in a single class lessens the cohesion of the class.

Rather than a single BM/C2 class, we might develop the BM/C2 class as an aggregate of

several classes as depicted below in Figure 6.

 DETECT TRACK

BM/C2

ReceivesTrackData()
Discriminate()

Correlate()
MonitorTBM()

ASSIGN WEAPON

AssignWeaponToTarget()

ENGAGE

AuthorizeInterceptorLaunch()

ASSESS KILL

ReceivesTrackData()
Discriminate()
Correlate()

Figure 6. BM/C2 Class as an Aggregate

34

As depicted in Figure 3, we separated the methods for developing a firing

solution from the BM/C2 class and assigned these methods to the Weapon class. These

methods are similar in function so the cohesion of this class is high. This separation is

important as the realizations of the BM/C2 class and the Weapon class may physically

reside on different hardware platforms. So, in addition to increasing the cohesion, we

reduce the coupling by substituting more interfaces that are small and better defined for

the larger interface required for data flow and messaging of the sticks and circles

architecture depicted in Figure 1 (reference Chapter II). The Weapon class and

subclasses are shown below in Figure 7.

WEAPON

Min_Range

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

SEA_BASED_WEAPON

Min_Range
Max_Range
Velocity
Position

DevelopFiring Solution()
CalculateMin_Prob_Kill()
FireInterceptor()

GROUND_BASED_WEAPON

Min_Range

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

SPACE_BASED_WEAPON

Min_Range
Max_Range
Position

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

AIRBORNE_WEAPON

Max_Altitude
Min_Range
Max_Range
Position
Velocity

DevelopFiring Solution()
CalculateMin_Prob_Kill()
FireInterceptor()

TACTICAL_GB_WEAPON

Min_Range
Max_Range
Location

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

STRATEGIC_GB_WEAPON

Min_Range
Max_Range
Location

DevelopFiringSolution()
CalculateMin_Prob_Kill()
FireInterceptor()

Figure 7. Subclasses of Weapon Class

 35

 Finally, we consider the Interceptor class. Given the attributes of the Threat

Missile class as well as potential deployment of our hypothetical missile defense system,

we can develop the attributes and associated requirements for the Interceptor class. For

example, the velocity of the Intermediate Range subclass of the Threat Missile class

ranges between 1 Km/second and 2 Km/second and the distance of this same subclass

ranges from 1000 Km to 2000 Km. As we consider the minimum altitude in which we

must negate the threat missile to ensure minimal ground effects of the resulting debris,

we can determine minimum velocities for our three subclasses of the Interceptor class.

These subclasses are depicted below in Figure 8.

INTERCEPTOR

Min_Range:=TBD
Min_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
LockInterceptPoint()

HIT_TO_KILL

Min_Range:=TBD
Max_Range:=TBD
Min_Velocity:=TBD
Max_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
Manuever()
LockInterceptPoint()

DETONATION_ON_IMPACT

Min_Range:=TBD
Max_Range:=TBD
Min_ Velocity:=TBD
Max_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
Manuever()
LockInterceptPoint()
Detonate()

LASER

Min_Range:=TBD
Max_Range:=
Min_Velocity:=TBD
Min_Prob_Kill:=0.80

Discriminate()
ReceiveUpdates()
LockInterceptPoint()
Lase()

Figure 8. Subclasses of Interceptor Class

 36

So, what can we glean from the above system-of-systems class diagram?

Minimal Messaging Between Classes. As we reason about the classes and

subclasses of our missile defense system, we can see that we will develop many

interfaces in the realization that replaces the single, large network interface of the sticks-

and-circles diagram (reference Figure 1 in Chapter II). This is important to us in that we

can manage a larger number of small, well-defined interfaces; however, the single, large

network interface is much too unwieldy and complicated to manage effectively. We can

reduce the messaging requirements of the large network interface to only that which is

necessary for realizing the subclasses of our system-of-systems. Because the interface

requirements are now manageable and known to all of the system developers, we have

enhanced our ability to effectively integrate these systems into a system-of-systems.

Additionally, by treating the missile defense components as classes and

developing concise interfaces that implement the minimum level of information sharing

among the classes, we can define a data structure that implements data hiding. That is,

by reducing the message traffic among classes to only that which is necessary to com-

plete the missile defense missions and functions, we can prevent external programs from

inadvertently modifying the state of a given class or injecting superfluous message traffic

that may cause undesired system-of-systems behavior.

By defining a data-only interface strategy, we can greatly reduce the coupling of

the missile defense components. A data-only interface design will result in a data-only

integration realization. That is, each system within the missile defense system-of-

systems will provide data that is suitable for transport and use by another system. Thus,

the missile defense system-of-systems will exhibit the following properties

• More likely to work with legacy software code

• No build-time coupling in any system

• Missile defense systems are not required to share a common platform

• Missile defense systems can share a database to store exchanged data

 37

A final benefit of realizing many small, well-defined interfaces rather than a

single large interface will be the flexibility for incorporating future changes in a given

class without negatively affecting the other classes. By data hiding and minimal message

traffic, the software within a missile defense class is effectively independent in structure

and realization than the other classes. As such, an internal software change to any single

missile defense class should not affect any other class given that the interfaces among the

classes remain unchanged [3].

Inheritance and Decentralized Control Flow. As we define the class and

subclass attributes, the concept of inheritance becomes important in that the allocation of

requirements through attributes and methods ensures consistency in the realization of the

subclasses in our developments. Each system developer will know the minimum set of

requirements that must be implemented and each developer knows what requirements the

other developers will realize.

By careful assignment of methods to each class, we can avoid the creation of the

so-called “god class” that performs the bulk of the work within the system-of-systems

[4]. Typically, we overload the battle manager function with the vast majority of the

work. More often than not, the battle manager software contains many dissimilar tasks

and requires a complex messaging network. Rather than primarily exchanging control or

triggering messages among several classes, the typical battle manager requires the

continual transport of great amounts of data that results in more complex rules of

messaging and bandwidth requirements. By employing the aforementioned UML and

OOD techniques, we can reassign methods to other classes in which these methods are

better suited.

For example, consider the discriminate method listed in the BM/C2 class in

Figure 2. This requires that the Sensor class send a great deal of data to the BM/C2 class.

Perhaps we might reason that the Sensor class should contain the discriminate method

and send a much smaller, refined track file to the BM/C2 class for prosecution. This

would greatly reduce the messaging requirements and greatly simplify the interface

between the Sensor class and the BM/C2 class.

 38

Encapsulation. As we reason about the classes and subclasses of the hypothetical

system, we find that we can modify the methods to maximize the benefits of data hiding

within the appropriate class. In the large sticks-and-circles network of Figure 1, nearly

all data is public by definition of the single, large interface to each system. By

developing appropriate methods for each class, we can begin to hide data within its class.

For example, consider the development of a firing solution for a given threat mis-

sile. In the large sticks-and-circles network, the firing solution uses public data that is

visible to all other systems. Because the data is public and the network connects each

system to all other systems, it is difficult for software designers to understand the impact

on system behavior as it is not readily apparent what system functionality is dependent on

the public data.

On the other hand, we can determine the data requirements for the development of

the firing solution in the Weapon class in Figure 6, and understand that the software

developers should hide that data within the Weapon class. While this data hiding may be

more difficult in procedural software, the public data issue is more readily apparent in the

class views of the system-of-systems than in the large sticks-and-circles network

diagram.

Activity Diagram. (Please refer to the BMDS Activity Diagram that is depicted

on pages 46 & 47.) The BMDS Activity Diagram provides a visual representation of the

sequencing of missile defense events from the perspective of a single threat ballistic

missile as described in the BMDS Use Cases. While the diagram depicts a single

sequence of events, each detected threat object follows this process concurrently without

any correlation to the other processes of the other threat objects.

In looking for inefficiencies, it is worth noting that the differences in tracking a

threat object and assessing the kill of a threat object are minimal. While additional

redundancy may be revealed in the development of future design and architectural

artifacts, we have established a return path from the kill assessment sequence of events

back to the detect and track sequence of events. This efficiency should reduce the

amount of code and effort required to realize the design.

 39

Of particular interest in the activity diagram are the two branches in the diagram

which are discussed as follows:

After the completion of the Correlate TrackData activity, the diagram branches

into two paths. The guard condition [Correlate to Existing Track] allows the activity to

proceed down this path given that the BMDS associated the newly received track data to

an existing track file. This ensures that the BMDS updates the existing threat ballistic

missile characteristics in the track file rather than creating a new track file for each newly

received set of track data. If [Correlate to Existing Track] is not true, then the BMDS

will assign a new track number to the track data and develop a new track file.

After the BMDS has assessed the newly received track data from a reported

intercept, the path divides into two paths. The guard condition [Target Negated] opens

the path that represents the case of the BMDS determination that the interceptor

destroyed the threat ballistic missile. This path terminates with the completion of the

diagram. The other path represents two possible situations: (1) the BMDS determines

that the threat ballistic missile was not destroyed or (2) the BMDS cannot make a

determination on the destruction of the threat ballistic missile. This path merges just

prior to the Apply Feature Recognition activity. This will cause the BMDS to repeat the

cycle so that the weapon can initiate the events required to destroy the threat ballistic

missile.

Sequence Diagrams. (Please refer to the BMDS Sequence Diagrams that are

depicted on pages 48-50.) We developed three sequence diagrams that depict the

interactions among the classes. For the sequence diagrams, we identified an infrared

sensor and a radar sensor as the mission differences between the two sensors are

significant. Infrared sensors have the primary responsibility for detecting a missile

launch while the radars have the primary responsibility for developing a fire quality track

for the weapon. Although the BMDS BMC2 will be a composite of many objects, we

will treat it as a single object at this time. This will make the initial iterations of the

analysis easier to follow.

As we view the BMDS sequence diagrams, one subtle aspect of the BMDS comes

to light. While the sensors are depicted as a class generalization, the subclasses of the

 40

Sensor class will not transmit track data in a synchronous fashion with respect to each

other. In other words, the Sensor subclasses will have varying sweep rates and data

transfer rates. As a means of simplifying the implementation of the BMDS, it would

seem wise to consider a ReceiveTrackData module that resides in each Sensor subclass.

The ReceiveTrackData module would be responsible for getting the track data from the

Sensor subclass by formatting the track data to a common BMDS protocol and

transferring the track data to the BMDS BMC2. The ReceiveTrackData module could be

standardized across the BMDS to facilitate ease of information transmission.

Additionally, this approach reduces the amount of transmitted data given that raw radar

traffic from multiple sensors would incur a huge network bandwidth requirement.

The Sensor subclasses will transmit track data to the BMDS BMC2 continuously.

As such, the BMDS BMC2 must work all its functions concurrently so that the BMDS

can react rapidly and effectively. Also, the sequence diagrams identify numerous BMDS

evaluations that will require persistent data: intelligence profiles of threat ballistic

missiles, weapon availability, interceptor characteristics, phenomenology data of

adversary missile booster flames, and phenomenology data of exploding adversary

warheads.

Statechart Diagrams. (Please refer to the BMDS Statechart Diagrams that are

depicted on pages 51-56.) Recall that we determined that the BMDS BMC2 must work

all its functions concurrently so that the BMDS can react rapidly and effectively. This

will require orthogonal states in the BMDS BMC2 statechart diagram. For the initial

iterations of the statechart diagrams, we will expand the activities in the activity diagram

to provide a greater level of detail of the activities within each substate.

Within the BMDS state, we have identified six orthogonal states: BMDS On/Off,

Detect, Track, Assign Weapon, Engage, and Assess Kill. The latter five states represent

the five major functions along the threat ballistic missile kill chain.

We incorporated timers in many substate regions to ensure that the substate is

exited regardless whether the activities are completed. This is important as the BMDS

BMC2 cannot cease to function if a specific activity is hung. It is more important to

cease the BMDS BMC2 activities for a single threat ballistic missile for the greater cause

 41

of negating the remainder of the detected threat ballistic missiles vice halting all BMDS

BMC2 operations while waiting for the BMDS BMC2 to clear a single, hung activity.

Note that the BMDS can assign up to 1000 track numbers (i.e. 000-999) in the

Track Region. It is essential that the BMDS have the capability to track a significant

number of detected objects. Consider the situation in which a weapon destroys a threat

ballistic missile. This missile will break up into many smaller pieces – some of which

will have mass and velocity. The BMDS must monitor these pieces until it can determine

that the pieces are missile debris rather than threat ballistic missiles.

The statechart also suggests a requirement for access to stored data. Note that in

the Detect region (substate S1_R2.3) that we want to apply feature recognition to the

newly received track data. To identify the track as a threat object, the battle management

function must have direct access to stored data of threat ballistic missile characteristics

that can be compared against track data. This requirement will be true in the Track

region (S2_R2) in that the battle management function must have access to stored data of

intelligence data so that the battle management function can determine the type and the

known characteristics of the threat object.

The statechart also reveals a requirement to develop two critical algorithms that

are essential to employ for multiple sensors that are tracking multiple threat objects. The

algorithm for data fusion is critical for a multiple sensor environment given that each

sensor will report track data to the battle management function which must fuse the

multiple track reports on a single threat object to form a single track report for that threat

object. Additionally, given that the battle management function will concurrently track

multiple objects, we must develop a correlation algorithm so that the incoming track

reports are associated with the appropriate track files. If a track report cannot be

associated with a currently active track file, then the battle management function must

assign a new track number to the track report and initiate a new track file.

In this iteration of the statechart logic, note that we employed a brute force

method for updating each track file regardless whether it contains active track data. In

later iterations of the statechart, a more efficient method of accessing and reviewing track

 42

files will be necessary to avoid unnecessary processing and delaying the prosecution of

the threat ballistic missiles.

Broker Pattern. (Please refer to the BMDS Broker Pattern diagrams that are

depicted on pages 57-58.) We chose to employ the Broker Pattern for the BMDS

problem for two reasons: (1) the Broker Pattern offers good decoupling of the Sensor

subclasses from the BMDS and the Weapon subclasses from the BMDS, and (2) the

BMDS will not know the location of the Sensor subclasses and Weapon subclasses at

compile time. The BMDS can be deployed anywhere on Earth so the number,

subclasses, and location of the Sensor and Weapon classes cannot be determined until an

adversary launches a ballistic missile attack. With the Broker Pattern, the Sensor and

Weapon subclasses register with the BMDS Broker during the boot process of those

subtypes. Of additional benefit to the BMDS is that subclasses can enter, leave, and re-

enter the network at any time. Finally, we can implement the Broker Pattern in such a

way that the BMDS Broker stores the received track data from the Sensor subclasses and

forwards the track data to the BMDS Detect Feature at a programmed data transfer rate.

The Broker Pattern also provides for the integrating of a Receive Track Data

module within the Sensor subclasses. This particular pattern fits the BMDS problem very

well.

Conclusions. Before we develop the conceptual software architecture views, let

us review what we have learned in the domain analysis.

· We identified five major functions that compose the missile defense kill

chain: Detect, Track, Assign Weapon, Engage, and Assess Kill.

· The BM/C2 will control the BMDS messaging and activities.

· We can identify specific messaging requirements among the classes.

· We should employ data hiding techniques to decrease the coupling issue.

· The sensor class will continuously transmit data to the BM/C2.

· The sweep rates of the sensors are independent of the update rate from the

sensors to the BM/C2.

 43

· Given that the Sensor superclass will result in various Sensor subclasses

that continually transmit data to the BMDS BMC2, the BMDS software designers

will need to develop track fusion algorithms.

· The BM/C2 will require concurrent processing activities.

· Incoming track data will either update an existing track file or initiate a

new track file.

· The BM/C2 must confirm a threat missile kill before dropping the track.

· Given that sensors, BM/C2 components, and weapons may enter and leave

the network, we should consider the broker pattern for the subscription of services

into the network.

Additionally, we have developed additional questions that must be addressed

prior to the system design:

· What will be the update rate from the sensor class to the BMDS BMC2?

· What will be the maximum number of objects that the BMDS BMC2 must

track?

· What is the range in number of sensors that will feed into the BMDS

BMC2?

· Will the BMDS battle management be automated or manual?

· Will the BMDS battle management be centralized or decentralized?

· What BMDS battle management overrides are required to prevent

undesired interceptor launches?

· What BMDS battle management software interlocks are required to

minimize the occurrence of an inadvertent launch?

· With respect to dynamically extending missile defense coverage, what

should the BMDS BMC2 do if a weapons platform is either negated or its magazine

is empty?

 44

· With respect to threat identification and classification, what should the

BMDS BMC2 do if a new track does not match the profiles in the persistent data?

· Consider the engage function. What will be the trigger to cease track

refinement and to authorize the launch of an interceptor?

· Consider debris clouds formed as a result of previously negated threat

missiles. What is the impact of the debris to the sensors and reporting of threat

objects?

· Consider a track lost in a debris cloud. Should the BMC2 propagate the

track with predictive information and continue to report the track or should the

BMC2 issue a drop track message and notify potentially impacted defended assets of

the lost track?

· Consider a forward-based sensor that reports to the battle management

function. What are the timing requirements (i.e., latency) for the track reports from

the sensor to the battle management function?

· Consider weapons that use remote tracks for firing solutions. What are the

timing requirements (i.e, latency) and accuracy requirements (i.e. fire quality track)

for the weapon?

· Consider establishing the correlation and fusion requirements. What is the

solution for a common timing source and a common geodetic reference source for

the BMDS classes?

 45

[Threat Object Detected]

[Correlated to Existing Track] Assign
TrackNumber

Develop
TrackFile

1

Apply
 Feature

Recognition

2

Correlate
TrackData

Receive
TrackData

Battle Management Activity Diagram
Page 1 of 2

 46

Battle Management Activity Diagram
Page 2 of 2

[Target Negated]

Develop
IPP/LPE

Match
Weapon to

Target

Develop
Firing

Solution

Monitor
Engagement

Authorize
Launch

Validate
Weapon

Availability

Assign
Target
Priority

2

Assess
Target
Status

Apply
Feature

Recognition

1

 47

track_data

Compare developed IPP/LPE
to threat intelligence data.

Correlate track data with existing
track files.

Cue radar with track data.

plume_data

Compare booster burn intensity
and time of burn stored in track
file to stored threat profiles.

Note 1: Ai continually repeats while receiving plume_data from IR sensor.

Note 2: As continually repeats while IR senses plume of threat ballistic
missile. As is independent of Ai.

Note 3: plume_data = position, velocity, and burn intensity

Note 4: track_data = track number, position, velocity, LPE, and IPP.

IR Sensor

Battle Management Sequence Diagram
IR Detect & Cue: Boost Phase
Page 1 of 3

Ai

track_data

If cannot correlate with existing track
after 3 consecutive plume_data
updates, then formulate track file &
assign track number.
Else update track file.

Calculate LPE & IPP.

If booster burn intensity, booster burn
time, and LPE match threat profiles,
then identify track as threat object.
Else identify as Unknown.

As

Radar Battle
Manager

Weapon

48

Note 1: Ai continually repeats.

Note 2: Ar continually repeats according to radar update rate. Ar is
independent of Ai.

Note 3: track data = position, velocity, and RCS

Correlate track data with existing
track files.

Determine type of threat ballistic
missile.

IR Sensor

Battle Management Sequence Diagram
Radar Tracking: Mid-Course Phase
Page 2 of 3
49

Ai If cannot correlate with existing track,
then formulate track file & assign
track number.
Else update track file.

If track data matches threat profiles,
then identify track as threat object.
Else identify as Unknown.

track_data Ar

Compare RCS/flight profile to
stored threat profiles.

Radar Battle
Manager

Weapon

 Battle Mana
Assign Wea
Page 3 of 3

Note 1: Ai con

Note 2: Ar con
independent of

Note 3: track
gement Sequence
pon and Engage

tinually repeats.

tinually repeats accordi
 Ai.

data = position, velocity
Diagram

IR Sensor Radar

ng to radar update rate. Ar is

, and RCS
track_data Ar

50

Ai Refine track data.Refine track file.
Assign target priority.

Authorize launch

Assign weapon to target

Weapon status response

Weapon status query

Match weapon to target

WeaponBattle
Manager

Develop firing
solution.

 51

Battle Management Statechart
S0 Global Battle Management
Page 1 of 6

S1 Detect S2 Track S5 AssessKillS3 AssignWeapon S4 Engage

S0 BM
evBM_On

SO_1 BM_Off SO_2 BM_On

evBM_Off

 Battle Management Statechart
S1 Detect
Page 2 of 6

3
S1_R1.1 Sensor

S1_R1 Detect_Region

[BM=On] S_R1.2 SensorDetectOn
entry:restartSearchTimer(1)

/ReceiveTrackData tm(SearchTimer)

DetectOff

52

EvTrackDataReceived
/Set:Count=0

[Threat Object Detected]
[Correlated WithExistingTrack]
/UpdateTrackFile()

{GoTo Page 3 of 6}

[BM=On]

[Threat Object Detected]
[Count>3]
/AssignTrackNumber()

[Count<3]

S1_R2 Detect_Region

tm(SearchTimer)

{GoTo Page 3 of 6}

S1_R2.2 CorrelationStandby
Correlation=Standby

S1_R2.1 CorrelationOff

S1_R2.3 CorrelationOn
entry:restartSearchTimer(1)
do/ApplyFeatureRecognition()
do/ApplyTrackFusion()
do/ApplyTrackCorrelation()
Count=Count+1

2C

1

 Battle Management Statechart
S2 Track
Page 3 of 6

S2 Track_Region

 53

[TrackNumber<999]

tm(TrackTimer)

[BM=On]
/Set:TrackNumber=000

[TrackNumber>999]
/Set:TrackNumber=000

C

2

S2_R1 FormulateTrackOff

S2_R2 FormulateTrack_On
entry:restart TrackTimer(0.001)
GetTrackData(TrackNumber)
do/FormulateTrackFile(TrackNumber)
do/CalculateTrack Position(TrackNumber)
do/CalculateTrack Velocity(TrackNumber)
do/Caculate RCS(TrackNumber)
do/CalculateTrack Covariance(TrackNumber)
do/Apply Intelligence Profiles(TrackNumber)
do/Classify Track(TrackNumber)
do/Calculate IPP(TrackNumber)
do/Calculate LPE(TrackNumber)
TrackNumber=TrackNumber+1

1

 Battle Management Statechart
S3 Assign Weapon
Page 4 of 6

S3 Assign_Weapon_Region

 54

[TrackNumber<999]

tm(TrackTimer)

[BM=On]
/Set:TrackNumber=000

[TrackNumber>999]
/Set:TrackNumber=000

C

S3_R1 Assign_Weapon_Off

S3_R2 AssignWeapon_On
entry:restartTrackTimer(0.001)
Get TrackData(TrackNumber)
do/match IPP(TrackNumber) to DAL
do/match TrackData(TrackNumber) to IntelligencProfiles
do/validate Weapon Availablity
do/validate Interceptor Inventory
do/assign Weapon to (TrackNumber)
TrackNumber=TrackNumber+1

 Battle Management Statechart
S4 Engage
Page 5 of 6

S4 Engage_Region

 55

[TrackNumber<999]

tm(TrackTimer)

[BM=On]
/Set:TrackNumber=000

[TrackNumber>999]
/Set:TrackNumber=000

C

S4_R2 Engage_On
entry:restartTrackTimer(0.001)
GetTrackData(TrackNumber)
do/predict Track Trajectory(TrackNumber)
do/compute Intercept Point(TrackNumber)
do/computer Time To Launch(TrackNumber)
do/compute Last Time To Launch(TrackNumber)
do/send Firing Solution(TrackNumber)toWeapon
do/send Launch Authorizationt(TrackNumber)toWeapon
TrackNumber=TrackNumber+1

S4_R1 Engage_Off

 Battle Management Statechart
S5 Assess Kill
Page 6 of 6

S5 Assess_Kill_Region

 56

[TrackNumber<999]

tm(TrackTimer)

[BM=On]
/Set:TrackNumber=000

[TrackNumber>999]
/Set:TrackNumber=000

S5_R2 AssessKill_On
entry:restartTrackTimer(0.001)
GetTrackData(TrackNumber)
do/matchWobble(TrackNumber)toIntelligenceProfiles
do/matchFlashIntensity(TrackNumber)toIntelligenceProfiles
do/matchSoundWave(TrackNumber)toIntelligenceProfiles
do/matchColorSpectrum(TrackNumber)toIntelligenceProfiles
TrackNumber=TrackNumber+1

S5_R1 AssessKill_Off

C

3

Battle Management Pattern Diagram
Detect Feature
Broker Pattern
Page 1 of 2

 regist

register1
 subscribe

 subscribe

track_d
 track_data1

track_data1

track_data1

detach1

detach1
 detach1
 track_data2

track_data2

detach2

detach2

 57detach2

BM
Broker

BM Detect
Feature

BM Detect
Feature
Proxy

Sensor_1
Proxy
register2
register2

er1

ata1

track_data2

track_data2

Sensor_2
Proxy Sensor_2Sensor_1

Battle Management Pattern Diagram
Engage Feature
Broker Pattern
Page 2 of 2

 58

register1
register1 subscribe

 subscribe

engage1
engage1

 engage1
engage1

launch1

launch1
 launch1

launch1

detach1
detach1

detach1

engage2 engage2 engage2

launch2
launch2

detach2
detach2

detach2

BM
Broker

BM Engage
Feature

BM Engage
Feature
Proxy

Weapon_1
Proxy Wea
register2
register2

engage2

launch2
launch2

Weapon_2
Proxy Weapon_2pon_1

V. SOFTWARE ARCHITECTURE

1. And the whole earth was of one language, and of one speech.

2. And it came to pass, as they journeyed from the east, that they found a plain in

the land of Shinar; and they dwelt there.

3. And they said one to another, Go to, let us make brick, and burn them

thoroughly. And they had brick for stone, and slime had they for mortar.

4. And they said, G to, let us build us a city and a tower, whose top may reach

unto heaven; and let us make us a name, lest we be scattered abroad upon the

face of the whole earth.

5. And the LORD came down to see the city and the tower, which the children of

men builded.

6. And the LORD said, Behold, the people is one, and they have all one

language; and this they begin to do: and now nothing will be restrained from

them, which they have imagined to do.

7. Go to, let us go down, and there confound their language, that they may not

understand one another’s speech.

8. So the LORD scattered them abroad from thence upon the face of all the

earth: and they left off to build the city.

9. Therefore is the name of it called Babel; because the LORD did there

confound the language of all the earth: and from thence did the LORD scatter

them abroad upon the face of all the earth.

Book of Genesis – Chapter 11

Dealing with the complexity of large-scale systems is a tremendous challenge for

even the most experienced software designers and developers. Large software systems

contain millions of components that interact to achieve the system capabilities. The

interaction of these components is far from obvious – especially true given the typical

artifacts that are created for a software project. These artifacts are critical to achieve a

 59

successful system acquisition as new team members are added at different phases of the

project. Even more challenging, the behavior of the components must be well understood

and modified as the system evolves. One prerequisite for do this correctly is an

understanding of how the software components interact as well the underlying principles

of the design [6].

If we are to develop system-of-systems that exhibit the desired system behavior,

then we should develop a software organizational structure that defines the behavior and

characteristics of both the conceptual software components and connectors that provide

the interaction between two components. Otherwise, we may introduce spurious or

incorrect software components and connectors. As we have experienced time and again,

this approach results in a tangled web of connectivity in which messages are passed all

about and all data must remain globally visible because we have not defined messaging

requirements among the components. The accidental complexity can then increase with

each new added feature and enhanced interface [3].

Unfortunately, humans are ill equipped to manage complexity. Human short-

term memory can typically hold between five and nine items simultaneously. Discussing

the complexity of a system can be difficult when humans use imprecise language to do

so.

Architecture-based development is often recommended as a technique for

handling the complexity of large-scale software projects. For this thesis, we will define

software architecture as the fundamental organization of a system embodied in its

components, their relationships to each other and to the environment, and the principles

guiding its design and evolution. Additionally, we will define an architectural view as a

presentation of a particular system or part of a system from a particular perspective [5].

We will develop the conceptual view and the module view of the BMDS software

components. Our objective in the conceptual and module views of the BMDS software is

to understand the behavior of the conceptual components.

Conceptual View. (Please refer to Conceptual Views on pages 67-70.) The

conceptual view describes the system in terms of its major design components and the

relationships among the components. The conceptual view is tied most closely to the

 60

application domain. In this view, the functionality of the system is mapped to

architectural elements called conceptual components with coordination and data

exchanges handled by components called connectors. In the conceptual view, problems

and solutions are viewed primarily in domain terms. The problems and solutions should

be independent of any particular software and hardware solutions. The engineering

concerns addressed by the conceptual view include the following:

· How does the BMDS fulfill the functional requirements?

· How might the BMDS functionality be partitioned?

· How are the legacy components integrated with the new components with

respect to the functional requirements?

· How are product lines supported with respect to BMDS elements?

· How can we minimize impact of changes to the domain with respect to

operational aspects such as performance, information transfer, availability, fault

tolerance, safety, effectiveness, new systems, etc.?

From the domain analysis, we developed a high-level configuration of the BMDS

(see Level One Conceptual View). We developed conceptual components and

connectors to depict the BMDS system-of-systems software conceptual organization as

defined in the BMDS BMC2 statechart (i.e., Detect, Track, Assign Weapon, Engage, and

Assess Kill). Note that we have identified the connectors between the conceptual

components as either a data component or a control component. Because the eventual

realization of this architecture might well be on numerous hardware platforms, our initial

efforts will be to maintain separation by identifying these five main conceptual

components.

In our refinement of the high-level BMDS configuration (see Level Two

Conceptual View), we identified conceptual subcomponents within the five main

conceptual components to include a conceptual subcomponent to accept external sensor

 61

data. These sub-components are cohesive in nature and are connected to each other with

data interfaces that reduce the level of coupling in the system. Given that components

will continually provide a visual display to the user, we know that the system will require

a graphical user interface (GUI). We developed this as a layer in the Module View rather

than develop a large number of conceptual subcomponents to handle the user display.

The rationale for this decision was to isolate the GUI from the Domain Logic so that

these two layers can be developed independently of each other. The data Domain Logic

will pass information to the GUI via the interface between the Presentation Layer and the

Domain Logic Layer.

Let us follow the logic in the Level Two Conceptual View to ensure that we were

consistent and complete with respect to the domain analysis by using a systematic manual

analysis technique. Sensor data is accepted by the conceptual Detect component. The

data is processed through the initial filters into a track file which is sent to the user

display and the conceptual Track component. In the conceptual Track component, the

track data in the track file is further processed to correlate the track data to existing tracks

as well as to identify and classify the track. Given this data processing, the conceptual

Track component develops the launch point prediction of the threat missile and the

predicted impact point of the threat missile. This information is provided to the user

display as well as the conceptual Assign Weapon component. In the conceptual Assign

Weapon component, the track file is evaluated to determine whether the threat missile

will impact within the area that contains the predefined defended assets list. If true, then

the conceptual Assign Weapon component matches a weapons platform to the threat

missile. This information is provided to the user display as well as the conceptual

Engage component. In the conceptual Engage component, the weapons platforms

releases the interceptor and provides corrections to the interceptor. As the interceptor

approaches the threat missile, flight control is transferred from the BMDS BMC2 to the

interceptor which engages in the endgame negation. This information is provided to the

user display as well as the conceptual Assess Kill component. In the conceptual Assess

Kill component, the BMDS accepts sensor data, and compares the received data with

persistent profiles and feature recognition data. If the conceptual Assess Kill component

determines that the threat missile was destroyed, then this component updates the user

 62

display and drops the track from the active track processing. If the conceptual Assess

Kill component determines that the threat missile was not destroyed, then the track is

retained in the active processing and the BMDS repeats the cycle. The logic in the

Conceptual View is consistent and complete as compared to the domain analysis.

Given that the connectors must be realized in the design, we developed the

protocol diagrams for the Conceptual View components and subcomponents (reference

Protocol diagrams). The importance of these diagrams is that these views tell the

software designer that incoming data types, outgoing message types, and valid message

exchange sequences must all be specifically defined and designed. Also, the software

designer must take into account the amount of incoming data as well as the track file

update sequencing and timing.

Module View. (Please refer to Module Views on pages 71 & 72.) The module

view begins the shift from conceptual design towards the realization of the system. The

module view is the architectural view in which application functionality, control

functionality, adaptation, and mediation are mapped to modules. In the module view, the

components and connectors from the conceptual view are mapped to subsystems and

modules. These modules interact by invoking services declared in the associated

interfaces or wait to be invoked by other modules [8].

The engineering concerns addressed by the module view include the following:

· How are the modules mapped to the conceptual BMDS software

platforms?

· What support services are required?

· How can dependencies between modules be minimized?

· How can reuse of modules and subsystems be maximized?

· What techniques can be used to insulate the components from changes in

other software components, software platforms, or BMDS requirements?

· How can testing be supported?

 63

As previously mentioned, the software architecture defines the system software

organization in terms of computational components and the interactions among those

components. We employed a layered organization in which each layer provides services

to the layer above it and acts as a client to the layer below it. We chose layers as we want

to leave open the possibility of realizing layers on different platforms in different

physical locations. For example, we may choose to realize the sensor services layer in

the Sensor class vice incorporating the sensor services in the BMC2 class. Layering is

one of the most common techniques that software designers employ to decompose a

complicated software system.

By decomposing the BMDS into layers, we can reap a number of benefits:

· We can understand a single layer as a coherent whole without knowing much

about the other layers.

· We can substitute layers with alternative implementations of the same basic

services.

· We can minimize dependencies between layers.

· Layers can make good places for standardization.

We chose to allocate the BMDS conceptual components into five layers:

Presentation, Domain Logic, Sensor Services, System Services, and Data Source. As we

assigned software components and modules to the layers, we considered coupling,

cohesion, and the likelihood of future changes [1]. We minimized the coupling by

separating the user display and user transaction requests from the domain logic

components and the sensor services. As the domain logic components are modified in

the future, this will not impact the components in either the presentation layer or the

sensor services layer. Additionally, we increased the cohesion of the components by

separating the functions of battle management and sensing through the establishment of

two layers: domain logic and sensor services.

The logic for the five layers was as follows:

1. Presentation Layer: This is the information presented to the BMDS users

by the Domain Logic components.

 64

2. Domain Logic Layer: This is the layer that contains the actual “work”

components of the system.

3. Sensor Services Layer: We chose to separate the sensor components from

the applications for two reasons: (1) decouple the sensor logic from the application logic

to reduce the dependency of the applications to the sensors and to reduce the complexity

of the interfaces and (2) ease of replacement of the sensors at a future date.

4. Data Source Layer. This layer contains persistent BMDS data storage.

5. System Services Layer: We chose to separate the communications

component from the components in the other layers to increase the independence of

applications and sensors from the communication method.

Following the development of the layers, we mapped the conceptual elements to

module elements as depicted in a Mapping Conceptual Elements to Module Elements

Table. For this effort, we grouped the ports and connectors into modules separate from

the component modules. The intent was to isolate the interfaces from the components.

Given that several modules had similar functions, we grouped several of the modules

(now sub-modules) into a more general module. These general modules are used in the

remainder of this effort.

In the Layers Connectivity diagrams, we presented the layers and the

dependencies of each layer to the others. The dependencies identified in this diagram

represent the identified interfaces among the layers. Note that the System Services and

Data Source layers are not visible at the functional level; however, we need: (1)

communications services to transport information in the BMDS and (2) data storage and

retrieval for persistent system data requirements.

Recall in Chapter IV that we discussed avoiding the creation of a BM/C2 “god

class” that performs the bulk of the work in the BMDS. As we observe the conceptual

components of the Domain Logic Layer, we might consider identifying three major

modules in this layer: MBMDS Network module, MLocal Domain module, and

MDomainLogicData Manager.

 65

The MBMDS Network module will contain the conceptual components that are

allocated to the BM/C2 elements that are networked together in the BMDS. This module

will focus on sharing track information among all BMDS elements as well as upper level

military management for situational awareness. The real-time information requirements

are not critical in this module as its primary objective is providing situational awareness

of the BMDS battlespace.

The MLocal Domain module will contain the conceptual components that are

allocated to the local sensors and associated sensor ground-stations. This module will

focus on local sensor tasks such as discrimination, sensor resource management, and non-

organic track file integration. The real-time processing information requirements are

essential to accomplish MLocal Domain’s primary objective of supporting the

development of providing a fire-quality track for the weapons class.

 66

net
acc

raw

raw

 BMDS High-Level Architecture

Conceptual View
21FEB03
userDisplay

userDisplay

userDisplay

work
ess

Data

so
ur

ce

de
st

so

ur
ce

de

st

so
ur

ce

de
st

sender receiver

Data

: Surveil

; D
at

a

: Track

: Assign Weapon

: Engage

: Assess Kill

; D
at

a

; Control

; D
at

a

userDisplay

 67

BMDS
Second L
21FEB03
Page 1 of

:Dat

:Trac

sensorData
68

Architecture
evel Conceptual View

 2

userDisplay

userDisplay

:D
at

a

:Track

:D
at

a

:Surveil

a Collection :Search Volume :Data Filters :Track File :Data :Data

k Correlation :Track
Identification

:Track
Classification

:IPP/LPP Estimate:Data :Data :Data

:Track
Discrimination :Data :Data

:Assign Weapon

:Track Evaluation :Weapon/Target Pairing :Data

:Data

userDisplay

BMDS Architecture
Second Level Conceptual View
21FEB03
Page 2 of 2

:Track Evaluation :Data
{Note: Assign Weapon repeated from previous page for
clarity and continuity.}

:Launch
Interceptor

:Flight
Correction

: Handover
Control

:Data :Data

:Fire Laser :Data

sensorData :Data
Comparions

:Feature
Evaluation

:Data :Data :Data Collection

 69
:Assign Weapon

:Weapon/Target Pairing

:Engage

:EndGame :Data

:C
on

tro
l

:C
on

tro
l

:Assess Kill

:Data :Assessment userDisplay

BMDS Architecture
Initial Layers from Conceptual View
28JAN03

Pr

Do

Sen

Syst

<<layer>>

esentation
:Data Fusion
(GUI Part)

:Cueing
(GUI Part)

:Flight Correction
(GUI Part)

:Assessment
 (GUI Part)

:Handover Control
(GUI Part)

:Launch Interceptor
(GUI Part)

:Weapon/Target Pairing
(GUI Part)

:Track Evaluation
(GUI Part)

:Track Identification
(GUI Part)

:IPP/LPE Estimate
(GUI Part)

:Track Classification
(GUI Part)

:Track Correlation
(GUI Part)
<<layer>>

main Logic
:Data Fusion
(Apps Part)

:Cueing
(Apps Part)

:Flight Correction
(Apps Part)

:Assessment
 (Apps Part)

:Handover Control
(Apps Part)

:Launch Interceptor
(Apps Part)

:Weapon/Target Pairing
(Apps Part)

:Track Evaluation
(Apps Part)

:Track Identification
(Apps Part)

:IPP/LPE Estimate
(Apps Part)

:Track Classification
(Apps Part)

:Track Correlation
(Apps Part)

s

<<layer>>

sor Service
 :Gridlock

 :Feature Evaluation

:Search Volume

:Track File

:Data Filters

:Data Collection

 D e

<<layer>>

em Services
:Communications

:

<<layer>>

ata Sourc
Persistent Data Stora

70
:Common Navigational
Reference
:Common Timing
Reference
:Data Files

ge

 BMDS Architecture
Layers Connectivity: Presentation to Domain Logic to Sensor Services
20FEB03

Sen

Do

M

M

Syst

<<layer>>
Presentation
<<module>>

MDomainLogicDataManager

(GUI Part)

<<module>>

MBMDS Network

(GUI Part)

<<module>>

MLocal Domain

(GUI Part)

<<module>>

MLocal Domain

(Apps Part)

<<module>>

MBMDS Network

(Apps Part)

<<module>>

MDomainLogicDataManager

(Apps Part)
<<layer>>
sor Services
T

MRe

M

MSeS

MT

s D

<<layer>>
em Service
:Communications

:P
<<layer>>
ata Source
<<layer>>
main Logic
<<module>>

rackDevelopment
ersistent Data Storage

:Data Files

71
<<module>>

rackMaintenance

<<module>>

DataAssociation
<<module>>

sourceManagement
<<module>>

nsSerDataManager
<<module>>

ensor Inialization

BMDS Architecture
Layers Connectivity: Domain Logic to Sensor Services & Data Source
20FEB03

<<module>>
MDomainLogicDataManager

<<module>>
MBMDS Local

<<module>>
MTrackProcessing

(local)

<<module>>
MSensor ServicesTasking

<<layer>>
Sensor Services

<<module>>

MTrackDevelopment
<<module>>

MTrackMaintenance
<<module>>

MDataAssociation

<<module>>

MResourceManagement

<<module>>

MSensSrvDataManager

D

<<module>>

MSensor Inialization

<<layer>>
Domain Logic

 72
<<module>>
MSensor ServicesTasking

<<module>>
MTrackProcessing

(network)

<<module>>
MWeapon Tasking

<<module>>
MData Source Data

Manager

:Persistent Data Storage

<<layer>>
ata Source

:Data Files

<<module>>
MBMDS Network

VI. OBSERVATIONS AND CONCLUSIONS

Doc: Wyatt, just in time. Pull up a chair.

Wyatt: Doc, you been hittin' it awful hard, haven't you?

Doc: Nonsense. I've not yet begun to defile myself.

Wyatt: I was wondering if maybe you wouldn't wanna go on over to the

Crystal Palace.

Doc: I will not be pawed at, thank you very much.

Kate: That's right. Doc can go on day and night and then some. That's

my lovin' man. Have another one, my lovin' man.

Player: I'm in

Ike: Hey, lovin' man. You been called.

Doc: Ooops.

Ike: What is that now? That’s 12 hands in a row, Holliday? Son of a

bitch, nobody is that lucky.

Doc: Why, Ike, whatever do you mean?

Virgil: Take it easy boys.

Doc: Maybe poker's just not your game, Ike. I know, let's have a

spelling contest.

-Tombstone

Based on this research, The Standish Group estimates that in 1995

American companies and government agencies will spend $81 billion for

canceled software projects. These same organizations will pay an additional

$59 billion for software projects that will be completed, but will exceed their

original time estimates. Risk is always a factor when pushing the technology

 73

envelope, but many of these projects were as mundane as a driver’s license

database, a new accounting package, or an order entry system.

On the success side, the average is only 16.2% for software projects that

are completed on-time and on-budget. In the larger companies, the news is

even worse: only 9% of their projects come in on-time and on-budget. And,

even when these projects are completed, many are not more than a mere

shadow of their original specification requirements. Projects completed by the

largest American companies have only approximately 42% of the originally-

proposed features and functions. Smaller companies do much better. A total of

78.4% of their software projects will get deployed with at least 74.2% of their

original features and functions. [14]

The opportunities for project failure are legion. Large-scale software

development efforts today are conducted in complex, distributed IT

environments. Development occurs in a fragile matrix of applications, users,

customer demands, laws, internal politics, budgets, and project an

organizational dependencies that change constantly. …Underestimating

project complexity and ignoring changing requirements are basic reasons why

projects fail. Under these conditions, software project management is almost an

oxymoron. [15]

In summary, this data demonstrates two things:

1. Requirements errors are likely to be the most common class of

error.

2. Requirements errors are likely to be the most expensive errors to

fix.

Given the frequency of requirements errors and multiplicative effect of

the “cost to fix” factor, it’s easy to predict that requirements errors will

contribute the majority –often 70 percent or more – of the rework costs. And

since rework typically consumes 30%-50% of a typical project budget, it follows

 74

that requirements errors can easily consume 25%-40% of the total project

budget.” [10]

The above quotes are but a few of the many testimonials on our seemingly

inability to acquire sound software systems. From study after study, we fail to learn the

painful lessons of other software developers and follow the desperate path of shattered

dreams of those that had the best of intentions of developing good software.

Much too often, we initiate coding from a reasoning about the “sticks-and-circles”

diagram. During the development, we add new layers of features and functional

enhancements to the system software without clear insight into the organization of the

system software. Inevitably, the basic software organization that seemed so reasonable at

the beginning begins to break apart under the weight of the system software revisions.

Unfortunately, the software development becomes another casualty to report in future

studies as to why software developments are not successful.

A good system model is an important basis for system development decisions.

Conversely, we cannot expect to make sound system development decisions armed with a

poor or nonexistent system model. Using various artifacts from the UML, we will

develop our system-of-systems model because humans tend to grasp and understand

graphical representations easier than written descriptions. This phenomenon becomes

truer as the complexity of a system increases.

While a software architecture will not guarantee that a system meets its

requirements, a poorly designed or ill-defined software architecture makes it nearly

impossible for the software developers to realize a system that meets its requirements [8].

Typically, the system architecture is little more than a “sticks-and-circles” diagram in

which the circles represent the various systems in the system-of-systems and the sticks

represent the communication links among the systems. More often than not, this type of

architectural view represents the totality of a system architectural effort in defense

organizations. The circles of the sticks-and-circles diagram do not define the behavior of

the systems and the sticks reveal nothing of the connectors that these lines represent.

Software engineers cannot make effective design decisions that will result in successful

acquisitions from this very limited system view.

 75

The greatest source of system software faults will occur in the integration of the

various systems. With respect to our case study, the missile defense systems will be a

complex product that will contain many discrete software packages within each system.

As a rule, these software packages will be developed independent of each other and

programmed in many different languages. Additionally, the missile defense system will

include legacy systems that are currently in operation. The means of integrating these

elements and legacy systems are intricate tactical data links that support the message

transfer within the system-of-systems.

As outlined in this thesis, we applied the UML and OOD techniques to the

system-of-systems requirements analysis as a means for reasoning about the very

complex BMDS development. Rather than disparate reasoning about the individual

systems in the BMDS system-of-systems construct, we developed a system-of-systems

model for reasoning about the system-of-systems as a single, functional entity.

The object-oriented paradigm offers a new system-of-systems requirements and

design methodology that can minimize accidental complexity and control essential

complexity through the object-oriented concepts of decentralized control flow, minimal

messaging between classes, implicit case analysis, and information-hiding mechanisms.

While the missile defense system will not be a pure object-oriented design, we can

incorporate many of the principles of object-oriented technology to decrease the

complexity of the system-of-systems. We believe that software engineers of system-of-

systems can use this object-oriented paradigm to produce a sound design for the system-

of-systems rather than the traditional federation of systems through a highly coupled

communication medium.

In our approach, we developed a domain analysis at the top level of abstraction

and worked downward into the details of the missile defense system. We developed use

cases to help us understand the goals and functionality of the missile defense system. We

developed other artifacts to capture system behavior from various perspectives. During

the BMDS domain analysis, we identified issues that surface for future architectural and

design considerations.

 76

As a means of dividing the problem into manageable pieces, we viewed the

missile defense problem via the functional requirements. We used the ballistic missile

kill chain to describe what functions that the BMDS must perform. We developed the

domain analysis by developing an abstract class diagram and developed various artifacts

that provided insight into the BMDS behavior. We observed the following in the domain

analysis:

· We identified five major functions that compose the missile defense kill

chain: Detect, Track, Assign Weapon, Engage, and Assess Kill.

· The BM/C2 will control the BMDS messaging and activities.

· We can identify specific messaging requirements among the classes.

· We should employ data hiding techniques to decrease the coupling issue.

· The sensor class will continuously transmit data to the BM/C2.

· The sweep rates of the sensors are independent of the update rate from the

sensors to the BM/C2.

· Given that the Sensor superclass will result in various Sensor subclasses

that continually transmit data to the BMDS BMC2, the BMDS software designers will

need to develop track fusion algorithms.

· The BM/C2 will require concurrent processing activities.

· Incoming track data will either update an existing track file or initiate a

new track file.

· The BM/C2 must confirm a threat missile kill before dropping the track.

· Given that sensors, BM/C2 components, and weapons may enter and leave

the network, we should consider the broker pattern for the subscription of services into

the network.

Additionally, we developed additional questions that must be addressed prior to

the system design:

· What will be the update rate from the sensor class to the BMDS BMC2?

 77

· What will be the maximum number of objects that the BMDS BMC2 must

track?

· What is the range in number of sensors that will feed into the BMDS

BMC2?

· Will the BMDS battle management be automated or manual?

· Will the BMDS battle management be centralized or decentralized?

· What BMDS battle management overrides are required to prevent

undesired interceptor launches?

· What BMDS battle management software interlocks are required to

minimize the occurrence of an inadvertent launch?

· With respect to dynamically extending missile defense coverage, what

should the BMDS BMC2 do if a weapons platform is either negated or its magazine is

empty?

· With respect to threat identification and classification, what should the

BMDS BMC2 do if a new track does not match the profiles in the persistent data?

· Consider the engage function. What will be the trigger to cease track

refinement and to authorize the launch of an interceptor?

· Consider debris clouds formed as a result of previously negated threat

missiles. What is the impact of the debris to the sensors and reporting of threat objects?

· Consider a track lost in a debris cloud. Should the BMC2 propagate the

track with predictive information and continue to report the track or should the BMC2

issue a drop track message and notify potentially impacted defended assets of the lost

track?

· Consider a forward-based sensor that reports to the battle management

function. What are the timing requirements (i.e. latency) for the track reports from the

sensor to the battle management function?

 78

· Consider weapons that use remote tracks for firing solutions. What are the

timing requirements (i.e. latency) and accuracy requirements (i.e. fire quality track) for

the weapon?

· Consider establishing the correlation and fusion requirements. What is the

solution for a common timing source and a common geodetic reference source for the

BMDS classes?

As we continued to develop our conceptual framework, we initiated the

development of the software architecture by constructing the conceptual and module

views of the BMDS. From a functional perspective, we derived conceptual

subcomponents for each of the five major conceptual components of the BMDS software

architecture. In the module view, we chose to allocate the BMDS conceptual

components into five layers: Presentation, Domain Logic, Sensor Services, System

Services, and Data Source. By decomposing the BMDS into layers, we reaped the

following benefits:

· We can understand a single layer as a coherent whole without knowing

much about the other layers.

· We can substitute layers with alternative implementations of the same

basic services.

· We can minimize dependencies between layers.

Future Research Considerations. The work presented in this thesis can be

expanded in several areas such as the following:

· Is this approach applicable to other systems-of-systems?

· Is this approach sufficiently general to transcend UML? That is, could

software engineers use other modeling languages for this approach?

· Can we develop automated tools to support detailed requirements

elicitation and conceptual architecture validation?

· Can we develop a cost/benefit analysis from a software engineering

perspective to contrast the approach of continued software maintenance as frequently

 79

practiced against the refactoring of system-of-systems software using the techniques

outlined in this thesis?

· Can we use formal methods (e.g., assertions) in the development of

component, module, and layer interfaces to increase the confidence in displaying the

desired behaviors of the system-of-systems? If true, could we develop a system-of-

systems test methodology for the operational system-of-systems to evaluate proposed

software enhancements?

Conclusion. Based on the results of the analysis from our missile defense case

study, we believe that system-of-systems software engineers can develop a conceptual

framework that will serve as a sound basis for system-of-systems development. We can

apply many of the accepted software engineering practices for single system

developments to the more complex problem of system-of-systems development. We can

develop various artifacts that help software engineers understand the system-of-systems

behavior rather than depending on voluminous system requirements specifications of the

written word. We can develop an abstract framework from which we can reason about

the system-of-systems. We can develop a conceptual software architecture that describes

a logical organization of proposed software modules. We believe that software engineers

can apply the conceptual framework techniques described in this document to system-of-

systems acquisitions with the objective of reducing accidental complexity and identifying

essential complexity.

If we choose to develop such a conceptual framework for our system-of-systems

development, then we can hope to improve on the dismal record of our software

developments. More importantly, we can hope to provide more useful software products

to our customers while reducing the time and cost to develop our products. As in all

human endeavors of any consequence, keen insight, careful reasoning, and deliberate

planning are the keys to a successful outcome. In the absence of these activities, we are

surely doomed to failure.

Now the general who wins a battle makes many calculations in his temple ere the

battle is fought. The general who loses a battle makes but few calculations beforehand.

Thus do many calculations lead to victory, and few calculations to defeat: how much

 80

more no calculation at all! It is by attention to this point that I can foresee who is likely

to win or lose.

- Sun Tzu on the Art of War

 81

THIS PAGE INTENTIONALLY LEFT BLANK

 82

LIST OF REFERENCES

[1] Bachman, Felix, et al, “Software Architecture Documentation in Practice:
Documenting Architectural Layers,” Carnegie Mellon Software Engineering
Institute, March 2000.

[2] Caffall, Dale Scott and Michael, J. Bret, “System-of-Systems Design From An

Object-Oriented Paradigm,” Monterey 2002 Workshop Proceedings: Radical
Innovations of Software and Systems Engineering in the Future, October 7-11,
2002.

[3] Constantine, Larry L., The Peopleware Papers: Notes on the Human Side of

Software, Upper Saddle River, New Jersey, Prentice-Hall, 2001.

[4] Darcy, David P. and Kemerer, Chris F., “Software Complexity: Toward a

Unified Theory of Coupling and Cohesion,” Friday Workshops, Management
Information Systems Research Center, Carlson School of Management,
University of Minnesota, February 8, 2002.

[5] Fowler, Martin, Patterns of Enterprise Application Architecture, Boston,

Massachusetts, Addison-Wesley, 2003.

[6] Garland, J. and Anthony, R. Large-Scale Software Architecture: A Practical

Guide to Using UML, New York: John Wiley & Sons, Ltd., 2002.

[7] Greenfield, Michael A., “Mission Success Starts With Safety,” presentation to

19th International System Safety Conference, Huntsville, Alabama, September 11,
2001.

[8] Hofemeister, Christine; Nord, Robert; and Soni, Delip; Applied Software

Architecture, Boston, Massachusetts, Addision-Wesley, 2000.

[9] Knutson, Charles and Carmichael, Sam, “Safety First: Avoiding Software

Mishaps,” Embedded.com, http://www.embedded.com/2000/0011/0011feat1.htm,
November 2001.

[10] Leffingwell, Dean and Widrig, Don, Managing Software Requirements – A

Unified Approach, Boston, Massachusetts, Addison-Wesley 2000.

[11] Lesishman, Theron R. and Cook, David A., “Requirements Risks Can Drown

Software Projects,” CrossTalk, Volume 15, Number 4, April 2002.

[12] Riel, Arthur J., Object-Oriented Design Heuristics, Reading, Massachusetts,

Addison-Wesley, 1996.

 83

http://www.embedded.com/2000/0011/0011feat1.htm

[13] Shaw, Mary and Garlan, David, Software Architecture: Perspectives on an
Emerging Discipline, Upper Saddle River, New Jersey, Prentice-Hall, 1996.

[14] Standish Group, “CHAOS,” The Standish Group, 1995.

[15] Standish Group, “CHAOS: A Recipe for Success,” The Standish Group

International, 1999.

[16] Storey, Neil, Safety-Critical Computer Systems, New York, Addison-Wesley

1996.

[17] Weber, Matthias and Weisbrod, Joachim, “Requirements Engineering in

Automotive Development: Experiences and Challenges,” IEEE Software,
Volume 20, Number 1, January/February 2003.

 84

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Bret Michael
Naval Postgraduate School
Monterey, California

4. Man-Tak Shing
Naval Postgraduate School
Monterey, California

5. Richard Riehle
Naval Postgraduate School
Monterey, California

6. Drew Hamilton
Auburn University
Auburn, Alabama

7. COL Kevin Greaney
Missile Defense Agency
Washington, D.C.

 85

	TABLE OF CONTENTS
	While the end of the Cold War has signaled a reduction in the likelihood of global conflict, the threat from foreign missiles has grown steadily as sophisticated missile technology becomes available on a wider scale. The proliferation of weapons of mass
	All ballistic missiles share a common, fundamental element - they follow a ballistic trajectory that includes three phases (reference Figure 2 on page 20). These phases are the boost phase, the midcourse phase, and the terminal phase. The boost phase
	
	
	IV.DOMAIN ANALYSIS
	The hostile response didn't seem to faze Smoking Man, who calmly took another puff from his cigarette. He blew out the smoke in Skinner's direction and responded, "I have no idea what you are referring to."

	Use Case: Assign Weapon
	
	Book of Genesis – Chapter 11

	INITIAL DISTRIBUTION LIST

